메뉴 건너뛰기




Volumn , Issue , 2012, Pages 677-687

Graph-based lexicon expansion with sparsity-inducing penalties

Author keywords

[No Author keywords available]

Indexed keywords

GRAPH THEORY; LEARNING ALGORITHMS; NATURAL LANGUAGE PROCESSING SYSTEMS; SUPERVISED LEARNING;

EID: 84907319569     PISSN: None     EISSN: None     Source Type: Conference Proceeding    
DOI: None     Document Type: Conference Paper
Times cited : (34)

References (38)
  • 1
    • 73549088698 scopus 로고    scopus 로고
    • Scalable training of l1- regularized log-linear models
    • G. Andrew and J. Gao. 2007. Scalable training of L1- regularized log-linear models. In Proc. of ICML.
    • (2007) Proc. of ICML
    • Andrew, G.1    Gao, J.2
  • 4
    • 34547969350 scopus 로고    scopus 로고
    • Label propagation and quadratic criterion
    • Olivier Chapelle, Bernhard Schölkopf, and Alexander Zien, editors, MIT Press
    • Y. Bengio, O. Delalleau, and N. Le Roux. 2006. Label propagation and quadratic criterion. In Olivier Chapelle, Bernhard Schölkopf, and Alexander Zien, editors, Semi-Supervised Learning, pages 193-216. MIT Press.
    • (2006) Semi-Supervised Learning , pp. 193-216
    • Bengio, Y.1    Delalleau, O.2    Le Roux, N.3
  • 5
    • 0020126872 scopus 로고
    • On the convexity of some divergence measures based on entropy functions
    • J. Burbea and C. R. Rao. 1982. On the convexity of some divergence measures based on entropy functions. IEEE Transactions on Information Theory, 28:489-495.
    • (1982) IEEE Transactions on Information Theory , vol.28 , pp. 489-495
    • Burbea, J.1    Rao, C.R.2
  • 9
    • 84859090981 scopus 로고    scopus 로고
    • Unsupervised part-ofspeech tagging with bilingual graph-based projections
    • D. Das and S. Petrov. 2011. Unsupervised part-ofspeech tagging with bilingual graph-based projections. In Proc. of ACL.
    • (2011) Proc. of ACL
    • Das, D.1    Petrov, S.2
  • 10
    • 84859071149 scopus 로고    scopus 로고
    • Semi-supervised framesemantic parsing for unknown predicates
    • D. Das and N. A. Smith. 2011. Semi-supervised framesemantic parsing for unknown predicates. In Proc. of ACL.
    • (2011) Proc. of ACL
    • Das, D.1    Smith, N.A.2
  • 11
    • 37549003336 scopus 로고    scopus 로고
    • MapReduce: Simplified data processing on large clusters
    • January
    • J. Dean and S. Ghemawat. 2008. MapReduce: simplified data processing on large clusters. Communications of the ACM, 51:107-113, January.
    • (2008) Communications of the ACM , vol.51 , pp. 107-113
    • Dean, J.1    Ghemawat, S.2
  • 14
    • 0001996296 scopus 로고
    • Frame semantics
    • Hanshin Publishing Co., Seoul, South Korea
    • C. J. Fillmore. 1982. Frame semantics. In Linguistics in the Morning Calm, pages 111-137. Hanshin Publishing Co., Seoul, South Korea.
    • (1982) Linguistics in the Morning Calm , pp. 111-137
    • Fillmore, C.J.1
  • 15
    • 19944407315 scopus 로고    scopus 로고
    • Linguistic Data Consortium
    • D. Graff. 2003. English Gigaword. Linguistic Data Consortium.
    • (2003) English Gigaword
    • Graff, D.1
  • 16
    • 29344448013 scopus 로고    scopus 로고
    • Semi-supervised learning by entropy minimization
    • Y. Grandvalet and Y. Bengio. 2004. Semi-supervised learning by entropy minimization. In Proc. of NIPS.
    • (2004) Proc. of NIPS
    • Grandvalet, Y.1    Bengio, Y.2
  • 18
    • 80053028502 scopus 로고    scopus 로고
    • Distributional representations for handling sparsity in supervised sequence labeling
    • F. Huang and A. Yates. 2009. Distributional representations for handling sparsity in supervised sequence labeling. In Proc. of ACL.
    • (2009) Proc. of ACL
    • Huang, F.1    Yates, A.2
  • 19
    • 84860537772 scopus 로고    scopus 로고
    • Semi-supervised conditional random fields for improved sequence segmentation and labeling
    • F. Jiao, S. Wang, C.-H. Lee, R. Greiner, and D. Schuurmans. 2006. Semi-supervised conditional random fields for improved sequence segmentation and labeling. In Proc. of ACL.
    • (2006) Proc. of ACL
    • Jiao, F.1    Wang, S.2    Lee, C.-H.3    Greiner, R.4    Schuurmans, D.5
  • 20
    • 73049115925 scopus 로고    scopus 로고
    • Sparsity and persistence: Mixed norms provide simple signal models with dependent coefficients
    • M. Kowalski and B. Torrésani. 2009. Sparsity and persistence: mixed norms provide simple signal models with dependent coefficients. Signal, Image and Video Processing, 3:251-264.
    • (2009) Signal, Image and Video Processing , vol.3 , pp. 251-264
    • Kowalski, M.1    Torrésani, B.2
  • 22
    • 0025952277 scopus 로고
    • Divergence measures based on the shannon entropy
    • J. Lin. 1991. Divergence measures based on the shannon entropy. IEEE Transactions on Information theory, 37:145-151.
    • (1991) IEEE Transactions on Information Theory , vol.37 , pp. 145-151
    • Lin, J.1
  • 25
    • 0000904537 scopus 로고    scopus 로고
    • Alternating minimization algorithms: From blahut-arimoto to expectation- maximization
    • A. Vardy, editor, Kluwer
    • J. A. O'Sullivan. 1998. Alternating minimization algorithms: from Blahut-Arimoto to Expectation- Maximization. In A. Vardy, editor, Codes, Curves, and Signals: Common Threads in Communications, pages 173-192. Kluwer.
    • (1998) Codes, Curves, and Signals: Common Threads in Communications , pp. 173-192
    • O'Sullivan, J.A.1
  • 26
    • 80053357918 scopus 로고    scopus 로고
    • Bootstrapping featurerich dependency parsers with entropic priors
    • D. A. Smith and J. Eisner. 2007. Bootstrapping featurerich dependency parsers with entropic priors. In Proc. of EMNLP.
    • (2007) Proc. of EMNLP
    • Smith, D.A.1    Eisner, J.2
  • 27
    • 64749107977 scopus 로고    scopus 로고
    • Soft-supervised learning for text classification
    • A. Subramanya and J. Bilmes. 2008. Soft-supervised learning for text classification. In Proc. of EMNLP.
    • (2008) Proc. of EMNLP
    • Subramanya, A.1    Bilmes, J.2
  • 28
    • 84858733268 scopus 로고    scopus 로고
    • Entropic graph regularization in non-parametric semi-supervised classification
    • A. Subramanya and J. Bilmes. 2009. Entropic graph regularization in non-parametric semi-supervised classification. In Proc. of NIPS.
    • (2009) Proc. of NIPS
    • Subramanya, A.1    Bilmes, J.2
  • 29
    • 79952257762 scopus 로고    scopus 로고
    • Efficient graph-based semi-supervised learning of structured tagging models
    • A. Subramanya, S. Petrov, and F. Pereira. 2010. Efficient Graph-based Semi-Supervised Learning of Structured Tagging Models. In Proc. of EMNLP.
    • (2010) Proc. of EMNLP
    • Subramanya, A.1    Petrov, S.2    Pereira, F.3
  • 30
    • 0042878370 scopus 로고    scopus 로고
    • Partially labeled classification with markov random walks
    • MIT Press
    • M. Szummer and T. Jaakkola. 2001. Partially labeled classification with Markov random walks. In Proc. of NIPS. MIT Press.
    • (2001) Proc. of NIPS
    • Szummer, M.1    Jaakkola, T.2
  • 31
  • 34
    • 84906926392 scopus 로고    scopus 로고
    • Word representations: a simple and general method for semisupervised learning
    • J. Turian, L. Ratinov, and Y. Bengio. 2010. Word representations: a simple and general method for semisupervised learning. In Proc. of ACL.
    • (2010) Proc. of ACL
    • Turian, J.1    Ratinov, L.2    Bengio, Y.3
  • 36
    • 0031345518 scopus 로고    scopus 로고
    • Algorithm 778: L-bfgs-b: Fortran subroutines for largescale bound-constrained optimization
    • C. Zhu, R. H. Byrd, P. Lu, and J. Nocedal. 1997. Algorithm 778: L-BFGS-B: Fortran subroutines for largescale bound-constrained optimization. ACM Transactions on Mathematical Software, 23:550-560.
    • (1997) ACM Transactions on Mathematical Software , vol.23 , pp. 550-560
    • Zhu, C.1    Byrd, R.H.2    Lu, P.3    Nocedal, J.4
  • 37
    • 1942484430 scopus 로고    scopus 로고
    • Semisupervised learning using gaussian fields and harmonic functions
    • X. Zhu, Z. Ghahramani, and J. Lafferty. 2003. Semisupervised learning using gaussian fields and harmonic functions. In Proc. of ICML.
    • (2003) Proc. of ICML
    • Zhu, X.1    Ghahramani, Z.2    Lafferty, J.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.