-
1
-
-
0019554556
-
All-solid lithium electrodes with mixed-conductor matrix
-
Boukamp B A, Lesh G C, Huggins R A. All-solid lithium electrodes with mixed-conductor matrix [J]. J Electrochem Soc, 1981, 128(4): 725-729.
-
(1981)
, vol.128
, Issue.4
, pp. 725-729
-
-
Boukamp, B.A.1
Lesh, G.C.2
Huggins, R.A.3
-
2
-
-
0035395745
-
Searching for new anode materials for the Li-ion technology: Time to deviate from the usual path
-
Poizot P, Laruelle S, Grugeon S, et al. Searching for new anode materials for the Li-ion technology: time to deviate from the usual path [J]. J Power Sources, 2001, 97-98: 235-239.
-
(2001)
, vol.97-98
, pp. 235-239
-
-
Poizot, P.1
Laruelle, S.2
Grugeon, S.3
-
3
-
-
33845622840
-
Nano-and bulk-silicon-based insertion anodes for lithium-ion secondary cells
-
Kasavajjula U, Wang C S, Appleby A J. Nano-and bulk-silicon-based insertion anodes for lithium-ion secondary cells [J]. J Power Sources, 2007, 163(2): 1003-1039.
-
(2007)
, vol.163
, Issue.2
, pp. 1003-1039
-
-
Kasavajjula, U.1
Wang, C.S.2
Appleby, A.J.3
-
4
-
-
0033185278
-
Lithium alloy negative electrodes
-
Huggins R A. Lithium alloy negative electrodes [J]. J Power Sources, 1999, 81: 13-19.
-
(1999)
, vol.81
, pp. 13-19
-
-
Huggins, R.A.1
-
5
-
-
33750430832
-
Highly reversible lithium storage in spheroidal carbon-coated silicon nanocomposites as anodes for lithium-ion batteries
-
Ng S H, Wang J Z, Wexler D, et al. Highly reversible lithium storage in spheroidal carbon-coated silicon nanocomposites as anodes for lithium-ion batteries [J]. Angew Chem Int Edit, 2006, 45(41): 6896-6899.
-
(2006)
, vol.45
, Issue.41
, pp. 6896-6899
-
-
Ng, S.H.1
Wang, J.Z.2
Wexler, D.3
-
6
-
-
53449094361
-
x/C nanocomposite as anode material for lithium-ion batteries
-
x/C nanocomposite as anode material for lithium-ion batteries [J]. Angew Chem Int Edit, 2008, 47(9): 1645-1649.
-
(2008)
, vol.47
, Issue.9
, pp. 1645-1649
-
-
Hu, Y.S.1
Demir-Cakan, R.2
Titirici, M.M.3
-
7
-
-
84860433571
-
High capacity and rate capability of core-shell structured nano-Si/C anode for Li-ion batteries
-
Hwa Y, Kim W S, Hong S H, et al. High capacity and rate capability of core-shell structured nano-Si/C anode for Li-ion batteries [J]. Electrochim Acta, 2012, 71: 201-205.
-
(2012)
, vol.71
, pp. 201-205
-
-
Hwa, Y.1
Kim, W.S.2
Hong, S.H.3
-
8
-
-
79551687445
-
Graphene/nanosized silicon composites for lithium battery anodes with improved cycling stability
-
Xiang H, Zhang K, Ji G, et al. Graphene/nanosized silicon composites for lithium battery anodes with improved cycling stability [J]. Carbon, 2011, 49(5): 1787-1796.
-
(2011)
Carbon
, vol.49
, Issue.5
, pp. 1787-1796
-
-
Xiang, H.1
Zhang, K.2
Ji, G.3
-
9
-
-
77949356255
-
Silicon nanoparticles-graphene paper composites for Li ion battery anodes
-
Lee J K, Smith K B, Hayner C M, et al. Silicon nanoparticles-graphene paper composites for Li ion battery anodes [J]. Chem Commun, 2010, 46(12): 2025-2027.
-
(2010)
, vol.46
, Issue.12
, pp. 2025-2027
-
-
Lee, J.K.1
Smith, K.B.2
Hayner, C.M.3
-
10
-
-
84863012168
-
Facile synthesis of silicon nanoparticles inserted into graphene sheets as improved anode materials for lithium-ion batteries
-
Zhou X S, Yin Y X, Wan L J, et al. Facile synthesis of silicon nanoparticles inserted into graphene sheets as improved anode materials for lithium-ion batteries [J]. Chem Commun, 2012, 48(16): 2198-2200.
-
(2012)
, vol.48
, Issue.16
, pp. 2198-2200
-
-
Zhou, X.S.1
Yin, Y.X.2
Wan, L.J.3
-
11
-
-
84859742777
-
In-plane vacancy-enabled high-power Si-graphene composite electrode for lithium-ion batteries
-
Zhao X, Hayner C M, Kung M C, et al. In-plane vacancy-enabled high-power Si-graphene composite electrode for lithium-ion batteries [J]. Adv Energy Mater, 2011, 1(6): 1079-1084.
-
(2011)
, vol.1
, Issue.6
, pp. 1079-1084
-
-
Zhao, X.1
Hayner, C.M.2
Kung, M.C.3
-
12
-
-
84867288645
-
Self-assembled nanocomposite of silicon nanoparticles encapsulated in graphene through electrostatic attraction for lithium-ion batteries
-
Zhou X S, Yin Y X, Wan L J, et al. Self-assembled nanocomposite of silicon nanoparticles encapsulated in graphene through electrostatic attraction for lithium-ion batteries [J]. Adv Energy Mater, 2012, 2(9): 1086-1090.
-
(2012)
, vol.2
, Issue.9
, pp. 1086-1090
-
-
Zhou, X.S.1
Yin, Y.X.2
Wan, L.J.3
-
13
-
-
78049285796
-
Flexible free-standing graphene-silicon composite film for lithium-ion batteries
-
Wang J Z, Zhong C, Chou S L, et al. Flexible free-standing graphene-silicon composite film for lithium-ion batteries [J]. Electrochem Commun, 2010, 12(11): 1467-1470.
-
(2010)
, vol.12
, Issue.11
, pp. 1467-1470
-
-
Wang, J.Z.1
Zhong, C.2
Chou, S.L.3
-
14
-
-
84871347182
-
Spin-coated silicon nanoparticle/graphene electrode as a binder-free anode for high-performance lithium-ion batteries
-
Zhou X S, Cao A M, Wan L J, et al. Spin-coated silicon nanoparticle/graphene electrode as a binder-free anode for high-performance lithium-ion batteries [J]. Nano Res, 2012, 5(12): 845-853.
-
(2012)
, vol.5
, Issue.12
, pp. 845-853
-
-
Zhou, X.S.1
Cao, A.M.2
Wan, L.J.3
-
15
-
-
84876702837
-
Graphene/carbon-coated Si nanoparticle hybrids as high-performance anode materials for li-ion batteries
-
Zhou M, Cai T W, Pu F, et al. Graphene/carbon-coated Si nanoparticle hybrids as high-performance anode materials for li-ion batteries [J]. ACS Appl Mater Inter, 2013, 5(8): 3449-3455.
-
(2013)
, vol.5
, Issue.8
, pp. 3449-3455
-
-
Zhou, M.1
Cai, T.W.2
Pu, F.3
-
16
-
-
0029333813
-
6 in organic electrolytes-an impedance study
-
6 in organic electrolytes-an impedance study [J]. J Power Sources, 1995, 56(1): 81-85.
-
(1995)
, vol.56
, Issue.1
, pp. 81-85
-
-
Liu, P.1
Wu, H.Q.2
-
17
-
-
33846261643
-
Reversible cycling of crystalline silicon powder
-
Obrovac M N, Krause L J. Reversible cycling of crystalline silicon powder [J]. J Electrochem Soc, 2007, 154(2): A103-A108.
-
(2007)
, vol.154
, Issue.2
, pp. A103-A108
-
-
Obrovac, M.N.1
Krause, L.J.2
-
18
-
-
70349961704
-
Carbon-silicon core-shell nanowires as high capacity electrode for lithium ion batteries
-
Cui L F, Yang Y, Hsu C M, et al. Carbon-silicon core-shell nanowires as high capacity electrode for lithium ion batteries [J]. Nano Lett, 2009, 9(9): 3370-3374.
-
(2009)
, vol.9
, Issue.9
, pp. 3370-3374
-
-
Cui, L.F.1
Yang, Y.2
Hsu, C.M.3
-
19
-
-
77955536058
-
Light-weight free-standing carbon nanotube-silicon films for anodes of lithium ion batteries
-
Cui L F, Hu L B, Choi J W, et al. Light-weight free-standing carbon nanotube-silicon films for anodes of lithium ion batteries [J]. ACS Nano, 2010, 4(7): 3671-3678.
-
(2010)
ACS Nano
, vol.4
, Issue.7
, pp. 3671-3678
-
-
Cui, L.F.1
Hu, L.B.2
Choi, J.W.3
-
20
-
-
77951730943
-
Nanostructured hybrid silicon/carbon nanotube heterostructures: Reversible high-capacity lithium-ion anodes
-
Wang W, Kumta P N. Nanostructured hybrid silicon/carbon nanotube heterostructures: reversible high-capacity lithium-ion anodes [J]. ACS Nano, 2010, 4(4): 2233-2241.
-
(2010)
ACS Nano
, vol.4
, Issue.4
, pp. 2233-2241
-
-
Wang, W.1
Kumta, P.N.2
-
21
-
-
84872504929
-
Directing silicon-graphene self-assembly as a core/shell anode for high-performance lithium-ion batteries
-
Zhu Y H, Liu W, Zhang X Y, et al. Directing silicon-graphene self-assembly as a core/shell anode for high-performance lithium-ion batteries [J]. Langmuir, 2013, 29(2): 744-749.
-
(2013)
Langmuir
, vol.29
, Issue.2
, pp. 744-749
-
-
Zhu, Y.H.1
Liu, W.2
Zhang, X.Y.3
-
22
-
-
34247400269
-
Phase transitions explanatory of the electrochemical degradation mechanism of Si based materials
-
Kang Y M, Lee S M, Kim S J, et al. Phase transitions explanatory of the electrochemical degradation mechanism of Si based materials [J]. Electrochem Commun, 2007, 9(5): 959-964.
-
(2007)
, vol.9
, Issue.5
, pp. 959-964
-
-
Kang, Y.M.1
Lee, S.M.2
Kim, S.J.3
-
23
-
-
33846996042
-
An in situ X-ray diffraction study of the reaction of Li with crystalline Si
-
Li J, Dahn J R. An in situ X-ray diffraction study of the reaction of Li with crystalline Si [J]. J Electrochem Soc, 2007, 154(3): A156-A161.
-
(2007)
, vol.154
, Issue.3
, pp. A156-A161
-
-
Li, J.1
Dahn, J.R.2
|