메뉴 건너뛰기




Volumn 135, Issue , 2014, Pages 165-173

Enhancing micro gas turbine performance through fogging technique: Experimental analysis

Author keywords

Fogging; Inlet air cooling; Micro gas turbine

Indexed keywords

AMPLIFICATION; ATMOSPHERIC TEMPERATURE; COOLING SYSTEMS; EFFICIENCY; FOG DISPERSAL; THERMAL LOAD;

EID: 84907171067     PISSN: 03062619     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.apenergy.2014.08.084     Document Type: Article
Times cited : (36)

References (43)
  • 1
    • 10044223039 scopus 로고    scopus 로고
    • Potential energy benefits of integrated refrigeration system with microturbine and absorption chiller
    • Hwang Y. Potential energy benefits of integrated refrigeration system with microturbine and absorption chiller. Int J Refrig 2004, 27:816-829.
    • (2004) Int J Refrig , vol.27 , pp. 816-829
    • Hwang, Y.1
  • 2
    • 3042730162 scopus 로고    scopus 로고
    • General characteristics of single shaft microturbine set at variable speed operation and its optimization
    • Wang W., Cai R., Zhang N. General characteristics of single shaft microturbine set at variable speed operation and its optimization. Appl Therm Eng 2004, 24:1851-1863.
    • (2004) Appl Therm Eng , vol.24 , pp. 1851-1863
    • Wang, W.1    Cai, R.2    Zhang, N.3
  • 3
    • 64549119177 scopus 로고    scopus 로고
    • Potential renewable energy resources of the Lerma Valley, Salta, Argentina for its strategic territorial planning
    • Belmonte S., Nu´nˇez V.N., Viramonte J.G., Franco J. Potential renewable energy resources of the Lerma Valley, Salta, Argentina for its strategic territorial planning. Renew Sustain Energy Rev 2009, 13:1475-1484.
    • (2009) Renew Sustain Energy Rev , vol.13 , pp. 1475-1484
    • Belmonte, S.1    Nu´nˇez, V.N.2    Viramonte, J.G.3    Franco, J.4
  • 4
    • 84873814678 scopus 로고    scopus 로고
    • Current utilization of microturbines as a part of a hybrid system in distributed generation technology
    • Ismail M.S., Moghavvemi M., Mahlia T.M.I. Current utilization of microturbines as a part of a hybrid system in distributed generation technology. Renew Sustain Energy Rev 2013, 21:142-152.
    • (2013) Renew Sustain Energy Rev , vol.21 , pp. 142-152
    • Ismail, M.S.1    Moghavvemi, M.2    Mahlia, T.M.I.3
  • 5
    • 84863771060 scopus 로고    scopus 로고
    • An autonomous hybrid energy system of wind/tidal/microturbine/battery storage
    • Mousavi S.M.G. An autonomous hybrid energy system of wind/tidal/microturbine/battery storage. Electr Power Energy Syst 2012, 43:1144-1154.
    • (2012) Electr Power Energy Syst , vol.43 , pp. 1144-1154
    • Mousavi, S.M.G.1
  • 6
    • 77954065005 scopus 로고    scopus 로고
    • Dynamic behavior of a stand-alone hybrid power generation system of wind turbine, microturbine, solar array and battery storage
    • Kalantar M., Mousavi S.M.G. Dynamic behavior of a stand-alone hybrid power generation system of wind turbine, microturbine, solar array and battery storage. Appl Energy 2010, 87(10):3051-3064.
    • (2010) Appl Energy , vol.87 , Issue.10 , pp. 3051-3064
    • Kalantar, M.1    Mousavi, S.M.G.2
  • 8
    • 84907172725 scopus 로고    scopus 로고
    • ISO 2314 Gas-turbines - Acceptance tests
    • ISO 2314. Gas-turbines - Acceptance tests; 2009.
    • (2009)
  • 9
    • 84928492957 scopus 로고
    • The impact of atmospheric conditions on gas turbine performance
    • EI-Hadik
    • EI-Hadik The impact of atmospheric conditions on gas turbine performance. J Eng Gas Turbines Power 1990, 112(4):590-596.
    • (1990) J Eng Gas Turbines Power , vol.112 , Issue.4 , pp. 590-596
  • 11
    • 33750498690 scopus 로고    scopus 로고
    • Inlet fogging of gas turbine engines: climatic analysis of gas turbine evaporative cooling potential of international locations
    • Chaker M., Meher-Homji C.B. Inlet fogging of gas turbine engines: climatic analysis of gas turbine evaporative cooling potential of international locations. J Eng Gas Turbines Power 2006, 128(4):815-825.
    • (2006) J Eng Gas Turbines Power , vol.128 , Issue.4 , pp. 815-825
    • Chaker, M.1    Meher-Homji, C.B.2
  • 12
    • 0001758189 scopus 로고
    • Enhancing gas turbine performance by intake air cooling using an absorption chiller
    • Mohanty B., Paloso G. Enhancing gas turbine performance by intake air cooling using an absorption chiller. Heat Recovery Syst CHP 1995, 15(1):41-50.
    • (1995) Heat Recovery Syst CHP , vol.15 , Issue.1 , pp. 41-50
    • Mohanty, B.1    Paloso, G.2
  • 13
    • 0036723299 scopus 로고    scopus 로고
    • Influence of the relative humidity on the air cooling thermal load in gas turbine power plant
    • Amell A.A., Cadavid F.J. Influence of the relative humidity on the air cooling thermal load in gas turbine power plant. Appl Therm Eng 2002, 22:1529-1533.
    • (2002) Appl Therm Eng , vol.22 , pp. 1529-1533
    • Amell, A.A.1    Cadavid, F.J.2
  • 14
    • 77954858338 scopus 로고    scopus 로고
    • A review of inlet air-cooling technologies for enhancing the performance of combustion turbines in Saudi Arabia
    • Al-Ibrahim A.M., Varnham A. A review of inlet air-cooling technologies for enhancing the performance of combustion turbines in Saudi Arabia. Appl Therm Eng 2010, 30:1879-1888.
    • (2010) Appl Therm Eng , vol.30 , pp. 1879-1888
    • Al-Ibrahim, A.M.1    Varnham, A.2
  • 15
    • 84880355862 scopus 로고    scopus 로고
    • Impact of the use of a hybrid turbine inlet air cooling system in arid climates
    • Al-Ansary H.A., Orfi J.A., Ali M.E. Impact of the use of a hybrid turbine inlet air cooling system in arid climates. Energy Convers Manage 2013, 75:214-223.
    • (2013) Energy Convers Manage , vol.75 , pp. 214-223
    • Al-Ansary, H.A.1    Orfi, J.A.2    Ali, M.E.3
  • 16
    • 0030084252 scopus 로고    scopus 로고
    • Enhancement of performance of gas turbine engines by inlet air cooling and cogeneration system
    • Najjar Y.S.H. Enhancement of performance of gas turbine engines by inlet air cooling and cogeneration system. Appl Therm Eng 1996, 16:163-173.
    • (1996) Appl Therm Eng , vol.16 , pp. 163-173
    • Najjar, Y.S.H.1
  • 17
    • 79955653721 scopus 로고    scopus 로고
    • Energetic and exergetic performance analyses of a combined heat and power plant with absorption inlet cooling and evaporative aftercooling
    • Khaliq A., Dincer I. Energetic and exergetic performance analyses of a combined heat and power plant with absorption inlet cooling and evaporative aftercooling. Energy 2011, 36:2662-2670.
    • (2011) Energy , vol.36 , pp. 2662-2670
    • Khaliq, A.1    Dincer, I.2
  • 18
    • 44249093205 scopus 로고    scopus 로고
    • Analysis of combustion turbine inlet air cooling systems applied to an operating cogeneration power plant
    • Chacartegui R., Jime´nez-Espadafor F., Sa´nchez D., Sa´nchez T. Analysis of combustion turbine inlet air cooling systems applied to an operating cogeneration power plant. Energy Convers Manage 2008, 49:2130-2141.
    • (2008) Energy Convers Manage , vol.49 , pp. 2130-2141
    • Chacartegui, R.1    Jime´nez-Espadafor, F.2    Sa´nchez, D.3    Sa´nchez, T.4
  • 19
    • 60549085370 scopus 로고    scopus 로고
    • Analytical method for evaluation of gas turbine inlet air cooling in combined cycle power plant
    • Yang C., Yang Z., Cai R. Analytical method for evaluation of gas turbine inlet air cooling in combined cycle power plant. Appl Energy 2009, 86:848-856.
    • (2009) Appl Energy , vol.86 , pp. 848-856
    • Yang, C.1    Yang, Z.2    Cai, R.3
  • 21
    • 0029158154 scopus 로고
    • Gas-turbine inlet-air cooling: you can almost pick your payback
    • Giourof A. Gas-turbine inlet-air cooling: you can almost pick your payback. Power 1995, 139:56-58.
    • (1995) Power , vol.139 , pp. 56-58
    • Giourof, A.1
  • 22
    • 0000425662 scopus 로고    scopus 로고
    • Benefits of compressor inlet air cooling for gas turbine cogeneration plants
    • De Lucia M., Lanfranchi C., Boggio V. Benefits of compressor inlet air cooling for gas turbine cogeneration plants. J Eng Gas Turbines Power 1996, 118:598-603.
    • (1996) J Eng Gas Turbines Power , vol.118 , pp. 598-603
    • De Lucia, M.1    Lanfranchi, C.2    Boggio, V.3
  • 23
    • 84907172723 scopus 로고    scopus 로고
    • ASHRAE Handbook HVAC Systems and Equipment [chapter 17]
    • ASHRAE Handbook HVAC Systems and Equipment; 2008. p. 17.1-17.5. [chapter 17].
    • (2008) , pp. 171-175
  • 24
    • 0034831399 scopus 로고    scopus 로고
    • Combustion turbine inlet air cooling (CTIAC): benefits and technology options in district energy applications
    • Anderpont J.S. Combustion turbine inlet air cooling (CTIAC): benefits and technology options in district energy applications. Trans Am Soc Heat Refrigerating Air Conditioning Eng 2001, 107:892-902.
    • (2001) Trans Am Soc Heat Refrigerating Air Conditioning Eng , vol.107 , pp. 892-902
    • Anderpont, J.S.1
  • 26
    • 74249090409 scopus 로고    scopus 로고
    • Analysis of gas turbine operating parameters with inlet fogging and wet compression processes
    • Sanaye S., Tahani M. Analysis of gas turbine operating parameters with inlet fogging and wet compression processes. Appl Therm Eng 2013, 30:234-244.
    • (2013) Appl Therm Eng , vol.30 , pp. 234-244
    • Sanaye, S.1    Tahani, M.2
  • 27
    • 73149118655 scopus 로고    scopus 로고
    • Evaluation of water injection effect on compressor and engine performance and operability
    • Roumeliotis I., Mathioudakis K. Evaluation of water injection effect on compressor and engine performance and operability. Appl Energy 2010, 87:1207-1216.
    • (2010) Appl Energy , vol.87 , pp. 1207-1216
    • Roumeliotis, I.1    Mathioudakis, K.2
  • 28
    • 33749261799 scopus 로고    scopus 로고
    • Potential of regenerative gas-turbine systems with high fogging compression
    • Kim K.H., Perez-Blanco H. Potential of regenerative gas-turbine systems with high fogging compression. Appl Energy 2007, 84:16-28.
    • (2007) Appl Energy , vol.84 , pp. 16-28
    • Kim, K.H.1    Perez-Blanco, H.2
  • 29
    • 0037002855 scopus 로고    scopus 로고
    • Inlet fogging of gas turbine engines - part a: fog droplet thermodynamics, heat transfer and practical considerations
    • Paper No. GT2002-30562:413-428. Amsterdam; The Netherlands.
    • Chaker M, Meher-Homji CB, Mee T. Inlet fogging of gas turbine engines - part a: fog droplet thermodynamics, heat transfer and practical considerations. In: Proceedings of ASME Turbo Expo 2002, Paper No. GT2002-30562:413-428. Amsterdam; The Netherlands.
    • Proceedings of ASME Turbo Expo 2002
    • Chaker, M.1    Meher-Homji, C.B.2    Mee, T.3
  • 30
    • 34848927229 scopus 로고    scopus 로고
    • Gas turbine fogging technology: a state-of-the-art review - Part I: inlet evaporative fogging - analytical and experimental aspects
    • Bhargava R.K., Meher-Homji C.B., Bianchi M., Ingistov S., Melino F., Chaker M.A., et al. Gas turbine fogging technology: a state-of-the-art review - Part I: inlet evaporative fogging - analytical and experimental aspects. J Eng Gas Turbines Power 2006, 129:443-453.
    • (2006) J Eng Gas Turbines Power , vol.129 , pp. 443-453
    • Bhargava, R.K.1    Meher-Homji, C.B.2    Bianchi, M.3    Ingistov, S.4    Melino, F.5    Chaker, M.A.6
  • 31
    • 79951768143 scopus 로고    scopus 로고
    • Effect of ambient temperature on the performance of micro gas turbine with cogeneration system in cold region
    • Basrawi F., Yamada T., Nakanishi K., Naing S. Effect of ambient temperature on the performance of micro gas turbine with cogeneration system in cold region. Appl Therm Eng 2011, 31:1058-1067.
    • (2011) Appl Therm Eng , vol.31 , pp. 1058-1067
    • Basrawi, F.1    Yamada, T.2    Nakanishi, K.3    Naing, S.4
  • 32
    • 78651455720 scopus 로고    scopus 로고
    • Applied performance research of a cogeneration arrangement with proposed efficiency well-balance method
    • Naing S., Yamada T., Nakanishi K. Applied performance research of a cogeneration arrangement with proposed efficiency well-balance method. J Power Energy Syst 2007, 1:199-210.
    • (2007) J Power Energy Syst , vol.1 , pp. 199-210
    • Naing, S.1    Yamada, T.2    Nakanishi, K.3
  • 33
    • 84907172722 scopus 로고    scopus 로고
    • Greenhouse Gas Technology Center Environmental Technology Verification Report: Capstone 60kW Microturbine CHP System. Greenhouse Gas Technology Center
    • Greenhouse Gas Technology Center. Environmental Technology Verification Report: Capstone 60kW Microturbine CHP System. Greenhouse Gas Technology Center; 2003. <. http://www.microturbine.com/_docs/EPA-C60testreport.pdf.
    • (2003)
  • 34
    • 85021252526 scopus 로고    scopus 로고
    • Combined Heat & Power (CHP) Resource Guide. 2nd ed
    • Midwest CHP Application Center and Avalon Consulting, Inc., Combined Heat & Power (CHP) Resource Guide. 2nd ed.; 2005: 11. <. http://www.midwestcleanenergy.org/Archive/pdfs/Resource:Guide_10312005_Final_Rev5.pdf.
    • (2005) , pp. 11
  • 35
    • 85021222828 scopus 로고    scopus 로고
    • Catalog of CHP Technologies
    • U.S. Environmental Protection Agency Combined Heat and Power Partnership. Catalog of CHP Technologies. <. http://www.epa.gov/chp/documents/catalog_chptech_full.pdf.
  • 36
    • 80052029132 scopus 로고    scopus 로고
    • Use of a test-bed to study the performance of micro gas turbines for cogeneration applications
    • Caresana F., Comodi G., Pelagalli L., Renzi M., Vagni S. Use of a test-bed to study the performance of micro gas turbines for cogeneration applications. Appl Therm Eng 2011, 31:3552-3558.
    • (2011) Appl Therm Eng , vol.31 , pp. 3552-3558
    • Caresana, F.1    Comodi, G.2    Pelagalli, L.3    Renzi, M.4    Vagni, S.5
  • 38
    • 84896521332 scopus 로고    scopus 로고
    • Microturbogas cogeneration systems for distributed generation: Effects of ambient temperature on global performance and components' behavior
    • Caresana F., Pelagalli L., Comodi G., Renzi M. Microturbogas cogeneration systems for distributed generation: Effects of ambient temperature on global performance and components' behavior. Appl Energy 2014, 124:17-27.
    • (2014) Appl Energy , vol.124 , pp. 17-27
    • Caresana, F.1    Pelagalli, L.2    Comodi, G.3    Renzi, M.4
  • 40
    • 27744502964 scopus 로고    scopus 로고
    • Microturbine performance improvement through the implementation of inlet air cooling
    • Sea, and Air, volume 1: Turbo Expo 2005.
    • Toussaint Williamson, Mike Luker, Hack RL. Microturbine performance improvement through the implementation of inlet air cooling. ASME Turbo Expo 2005: Power for Land, Sea, and Air, volume 1: Turbo Expo 2005.
    • ASME Turbo Expo 2005: Power for Land
    • Toussaint, Williamson1    Mike, Luker2    Hack, R.L.3
  • 41
    • 34848907720 scopus 로고    scopus 로고
    • Key parameters for the performance of impaction-pin nozzles used in inlet fogging of gas turbine engines
    • Chaker M.A. Key parameters for the performance of impaction-pin nozzles used in inlet fogging of gas turbine engines. J Eng Gas Turbines Power 2007, 129:473-477.
    • (2007) J Eng Gas Turbines Power , vol.129 , pp. 473-477
    • Chaker, M.A.1
  • 42
    • 84883764535 scopus 로고    scopus 로고
    • Numerical simulation of water spray for pre-cooling of inlet air in natural draft dry cooling towers
    • Alkhedhair A., Gurgenci H., Jahn I., Guan Z., He S. Numerical simulation of water spray for pre-cooling of inlet air in natural draft dry cooling towers. Appl Therm Eng 2013, 61:416-424.
    • (2013) Appl Therm Eng , vol.61 , pp. 416-424
    • Alkhedhair, A.1    Gurgenci, H.2    Jahn, I.3    Guan, Z.4    He, S.5
  • 43
    • 79955461534 scopus 로고    scopus 로고
    • Gas turbine power augmentation: parametric study relating to fog droplet size and its influence on evaporative efficiency
    • Chaker M.A., Meher-Homji C.B. Gas turbine power augmentation: parametric study relating to fog droplet size and its influence on evaporative efficiency. J Eng Gas Turbines Power 2011, 133:1-10.
    • (2011) J Eng Gas Turbines Power , vol.133 , pp. 1-10
    • Chaker, M.A.1    Meher-Homji, C.B.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.