|
Volumn 101, Issue , 2014, Pages 738-749
|
Group-PCA for very large fMRI datasets
c
INRIA SACLAY
(France)
|
Author keywords
Big data; FMRI; ICA; PCA
|
Indexed keywords
ACCURACY;
ARTICLE;
CONNECTOME;
DATA BASE;
DATA PROCESSING;
FUNCTIONAL MAGNETIC RESONANCE IMAGING;
HUMAN;
INTERMETHOD COMPARISON;
MATHEMATICAL PARAMETERS;
PRINCIPAL COMPONENT ANALYSIS;
RESTING STATE NETWORK;
SIMULATION;
TEMPORAL CONCATENATION;
VALIDATION STUDY;
WHITE NOISE;
ARTIFACT;
COMPUTER SIMULATION;
NUCLEAR MAGNETIC RESONANCE IMAGING;
PROCEDURES;
STATISTICAL ANALYSIS;
ARTIFACTS;
COMPUTER SIMULATION;
CONNECTOME;
DATA INTERPRETATION, STATISTICAL;
HUMANS;
MAGNETIC RESONANCE IMAGING;
PRINCIPAL COMPONENT ANALYSIS;
|
EID: 84907056848
PISSN: 10538119
EISSN: 10959572
Source Type: Journal
DOI: 10.1016/j.neuroimage.2014.07.051 Document Type: Article |
Times cited : (199)
|
References (9)
|