메뉴 건너뛰기




Volumn , Issue , 2014, Pages 1116-1125

Mining topics in documents: Standing on the shoulders of big data

Author keywords

lifelong learning; opinion aspect extraction; topic model

Indexed keywords


EID: 84907033085     PISSN: None     EISSN: None     Source Type: Conference Proceeding    
DOI: 10.1145/2623330.2623622     Document Type: Conference Paper
Times cited : (149)

References (38)
  • 1
    • 71149108475 scopus 로고    scopus 로고
    • Incorporating domain knowledge into topic modeling via Dirichlet Forest priors
    • D. Andrzejewski, X. Zhu, and M. Craven. Incorporating domain knowledge into topic modeling via Dirichlet Forest priors. In ICML, pages 25-32, 2009.
    • (2009) ICML , pp. 25-32
    • Andrzejewski, D.1    Zhu, X.2    Craven, M.3
  • 2
    • 84881083774 scopus 로고    scopus 로고
    • A framework for incorporating general domain knowledge into latent Dirichlet allocation using first-order logic
    • D. Andrzejewski, X. Zhu, M. Craven, and B. Recht. A framework for incorporating general domain knowledge into latent Dirichlet allocation using first-order logic. In IJCAI, pages 1171-1177, 2011.
    • (2011) IJCAI , pp. 1171-1177
    • Andrzejewski, D.1    Zhu, X.2    Craven, M.3    Recht, B.4
  • 3
    • 74549185029 scopus 로고    scopus 로고
    • Supervised Topic Models
    • D. M. Blei and J. D. McAulie. Supervised Topic Models. In NIPS, pages 121-128, 2007.
    • (2007) NIPS , pp. 121-128
    • Blei, D.M.1    McAulie, J.D.2
  • 5
    • 74549174511 scopus 로고    scopus 로고
    • Learning Document-Level Semantic Properties from Free-Text Annotations
    • S. R. K. Branavan, H. Chen, J. Eisenstein, and R. Barzilay. Learning Document-Level Semantic Properties from Free-Text Annotations. In ACL, pages 263-271, 2008.
    • (2008) ACL , pp. 263-271
    • Branavan, S.R.K.1    Chen, H.2    Eisenstein, J.3    Barzilay, R.4
  • 6
    • 84863381525 scopus 로고    scopus 로고
    • Reading Tea Leaves: How Humans Interpret Topic Models
    • J. Chang, J. Boyd-Graber, W. Chong, S. Gerrish, and D. M. Blei. Reading Tea Leaves: How Humans Interpret Topic Models. In NIPS, pages 288-296, 2009.
    • (2009) NIPS , pp. 288-296
    • Chang, J.1    Boyd-Graber, J.2    Chong, W.3    Gerrish, S.4    Blei, D.M.5
  • 7
    • 84919949149 scopus 로고    scopus 로고
    • Topic Modeling using Topics from Many Domains, Lifelong Learning and Big Data
    • Z. Chen and B. Liu. Topic Modeling using Topics from Many Domains, Lifelong Learning and Big Data. In ICML, 2014.
    • (2014) ICML
    • Chen, Z.1    Liu, B.2
  • 8
    • 84906929305 scopus 로고    scopus 로고
    • Aspect Extraction with Automated Prior Knowledge Learning
    • Z. Chen, A. Mukherjee, and B. Liu. Aspect Extraction with Automated Prior Knowledge Learning. In ACL, pages 347-358, 2014.
    • (2014) ACL , pp. 347-358
    • Chen, Z.1    Mukherjee, A.2    Liu, B.3
  • 11
    • 70350641332 scopus 로고    scopus 로고
    • A Generic Approach to Topic Models
    • G. Heinrich. A Generic Approach to Topic Models. In ECML PKDD, pages 517 - 532, 2009.
    • (2009) ECML PKDD , pp. 517-532
    • Heinrich, G.1
  • 12
    • 11244330002 scopus 로고    scopus 로고
    • Probabilistic Latent Semantic Analysis
    • T. Hofmann. Probabilistic Latent Semantic Analysis. In UAI, pages 289-296, 1999.
    • (1999) UAI , pp. 289-296
    • Hofmann, T.1
  • 13
    • 12244305149 scopus 로고    scopus 로고
    • Mining and Summarizing Customer Reviews
    • M. Hu and B. Liu. Mining and Summarizing Customer Reviews. In KDD, pages 168-177, 2004.
    • (2004) KDD , pp. 168-177
    • Hu, M.1    Liu, B.2
  • 14
    • 84859058588 scopus 로고    scopus 로고
    • Interactive Topic Modeling
    • Y. Hu, J. Boyd-Graber, and B. Satino. Interactive Topic Modeling. In ACL, pages 248-257, 2011.
    • (2011) ACL , pp. 248-257
    • Hu, Y.1    Boyd-Graber, J.2    Satino, B.3
  • 15
    • 85032592822 scopus 로고    scopus 로고
    • Incorporating Lexical Priors into Topic Models
    • J. Jagarlamudi, H. D. III, and R. Udupa. Incorporating Lexical Priors into Topic Models. In EACL, pages 204-213, 2012.
    • (2012) EACL , pp. 204-213
    • Jagarlamudi, J.1    D III, H.2    Udupa, R.3
  • 16
    • 79952432020 scopus 로고    scopus 로고
    • Aspect and sentiment unification model for online review analysis
    • Feb.
    • Y. Jo and A. H. Oh. Aspect and sentiment unification model for online review analysis. In WSDM, pages 815-824, Feb. 2011.
    • (2011) WSDM , pp. 815-824
    • Jo, Y.1    Oh, A.H.2
  • 17
    • 84880235300 scopus 로고    scopus 로고
    • Transfer Topic Modeling with Ease and Scalability
    • J.-h. Kang, J. Ma, and Y. Liu. Transfer Topic Modeling with Ease and Scalability. In SDM, pages 564-575, 2012.
    • (2012) SDM , pp. 564-575
    • Kang, J.-H.1    Ma, J.2    Liu, Y.3
  • 20
    • 0001267179 scopus 로고    scopus 로고
    • Mining association rules with multiple minimum supports
    • ACM
    • B. Liu, W. Hsu, and Y. Ma. Mining association rules with multiple minimum supports. In KDD, pages 337-341. ACM, 1999.
    • (1999) KDD , pp. 337-341
    • Liu, B.1    Hsu, W.2    Ma, Y.3
  • 21
    • 57349178382 scopus 로고    scopus 로고
    • Opinion integration through semi-supervised topic modeling
    • Y. Lu and C. Zhai. Opinion integration through semi-supervised topic modeling. In WWW, pages 121-130, 2008.
    • (2008) WWW , pp. 121-130
    • Lu, Y.1    Zhai, C.2
  • 22
    • 59349099333 scopus 로고    scopus 로고
    • Chapman & Hall/CRC Texts in Statistical Science
    • H. Mahmoud. Polya Urn Models. Chapman & Hall/CRC Texts in Statistical Science, 2008.
    • (2008) Polya Urn Models
    • Mahmoud, H.1
  • 23
    • 35348882767 scopus 로고    scopus 로고
    • Topic sentiment mixture: Modeling facets and opinions in weblogs
    • Q. Mei, X. Ling, M. Wondra, H. Su, and C. Zhai. Topic sentiment mixture: modeling facets and opinions in weblogs. In WWW, pages 171-180, 2007.
    • (2007) WWW , pp. 171-180
    • Mei, Q.1    Ling, X.2    Wondra, M.3    Su, H.4    Zhai, C.5
  • 25
    • 84893101547 scopus 로고    scopus 로고
    • The FLDA Model for Aspect-based Opinion Mining: Addressing the Cold Start Problem
    • S. Moghaddam and M. Ester. The FLDA Model for Aspect-based Opinion Mining: Addressing the Cold Start Problem. In WWW, pages 909-918, 2013.
    • (2013) WWW , pp. 909-918
    • Moghaddam, S.1    Ester, M.2
  • 26
    • 84878173804 scopus 로고    scopus 로고
    • Aspect Extraction through Semi-Supervised Modeling
    • A. Mukherjee and B. Liu. Aspect Extraction through Semi-Supervised Modeling. In ACL, pages 339-348, 2012.
    • (2012) ACL , pp. 339-348
    • Mukherjee, A.1    Liu, B.2
  • 27
    • 77956031473 scopus 로고    scopus 로고
    • A Survey on Transfer Learning
    • S. J. Pan and Q. Yang. A Survey on Transfer Learning. IEEE Trans. Knowl. Data Eng., 22(10):1345-1359, 2010.
    • (2010) IEEE Trans. Knowl. Data Eng. , vol.22 , Issue.10 , pp. 1345-1359
    • Pan, S.J.1    Yang, Q.2
  • 29
    • 80053392186 scopus 로고    scopus 로고
    • Labeled LDA: A supervised topic model for credit attribution in multi-labeled corpora
    • D. Ramage, D. Hall, R. Nallapati, and C. D. Manning. Labeled LDA: a supervised topic model for credit attribution in multi-labeled corpora. In EMNLP, pages 248-256, 2009.
    • (2009) EMNLP , pp. 248-256
    • Ramage, D.1    Hall, D.2    Nallapati, R.3    Manning, C.D.4
  • 31
    • 0010687621 scopus 로고    scopus 로고
    • Lifelong Learning Algorithms
    • S. Thrun and L. Pratt, editors, Kluwer Academic Publishers
    • S. Thrun. Lifelong Learning Algorithms. In S. Thrun and L. Pratt, editors, Learning To Learn. Kluwer Academic Publishers, 1998.
    • (1998) Learning to Learn
    • Thrun, S.1
  • 32
    • 57349120510 scopus 로고    scopus 로고
    • Modeling online reviews with multi-grain topic models
    • I. Titov and R. McDonald. Modeling online reviews with multi-grain topic models. In WWW, pages 111-120, 2008.
    • (2008) WWW , pp. 111-120
    • Titov, I.1    McDonald, R.2
  • 33
    • 77956195200 scopus 로고    scopus 로고
    • Latent aspect rating analysis on review text data: A rating regression approach
    • H.Wang, Y. Lu, and C. Zhai. Latent aspect rating analysis on review text data: a rating regression approach. In KDD, pages 783-792, 2010.
    • (2010) KDD , pp. 783-792
    • Wang, H.1    Lu, Y.2    Zhai, C.3
  • 34
    • 57349129298 scopus 로고    scopus 로고
    • Topic-bridged PLSA for cross-domain text classification
    • G. Xue, W. Dai, Q. Yang, and Y. Yu. Topic-bridged PLSA for cross-domain text classification. In SIGIR, pages 627-634, 2008.
    • (2008) SIGIR , pp. 627-634
    • Xue, G.1    Dai, W.2    Yang, Q.3    Yu, Y.4
  • 35
    • 84862269989 scopus 로고    scopus 로고
    • Bridging the Language Gap: Topic Adaptation for Documents with Different Technicality
    • S. H. Yang, S. P. Crain, and H. Zha. Bridging the Language Gap: Topic Adaptation for Documents with Different Technicality. In AISTATS, volume 15, pages 823-831, 2011.
    • (2011) AISTATS , vol.15 , pp. 823-831
    • Yang, S.H.1    Crain, S.P.2    Zha, H.3
  • 36
    • 79957945646 scopus 로고    scopus 로고
    • Constrained LDA for grouping product features in opinion mining
    • May
    • Z. Zhai, B. Liu, H. Xu, and P. Jia. Constrained LDA for grouping product features in opinion mining. In PAKDD, pages 448-459, May 2011.
    • (2011) PAKDD , pp. 448-459
    • Zhai, Z.1    Liu, B.2    Xu, H.3    Jia, P.4
  • 37
    • 80053240424 scopus 로고    scopus 로고
    • Jointly Modeling Aspects and Opinions with a MaxEnt-LDA Hybrid
    • W. X. Zhao, J. Jiang, H. Yan, and X. Li. Jointly Modeling Aspects and Opinions with a MaxEnt-LDA Hybrid. In EMNLP, pages 56-65, 2010.
    • (2010) EMNLP , pp. 56-65
    • Zhao, W.X.1    Jiang, J.2    Yan, H.3    Li, X.4


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.