-
1
-
-
0033536012
-
Broad patterns of gene expression revealed by clustering analysis of tumor and normal colon tissues probed by oligonucleotide arrays
-
U. Alon, N. Barkai, D. A. Notterman, K. Gish, S. Ybarra, D. Mack, and A. J. Levine. Broad patterns of gene expression revealed by clustering analysis of tumor and normal colon tissues probed by oligonucleotide arrays. Proceedings of the National Academy of Sciences, 96(12):6745-6750, 1999.
-
(1999)
Proceedings of the National Academy of Sciences
, vol.96
, Issue.12
, pp. 6745-6750
-
-
Alon, U.1
Barkai, N.2
Notterman, D.A.3
Gish, K.4
Ybarra, S.5
Mack, D.6
Levine, A.J.7
-
3
-
-
80053051956
-
Boosted multi-task learning
-
O. Chapelle, P. Shivaswamy, S. Vadrevu, K. Weinberger, Y. Zhang, and B. Tseng. Boosted multi-task learning. Machine learning, 85(1):149-173, 2011.
-
(2011)
Machine Learning
, vol.85
, Issue.1
, pp. 149-173
-
-
Chapelle, O.1
Shivaswamy, P.2
Vadrevu, S.3
Weinberger, K.4
Zhang, Y.5
Tseng, B.6
-
5
-
-
56449092085
-
Efficient projections onto the l1-ball for learning in high dimensions
-
ACM
-
J. Duchi, S. Shalev-Shwartz, Y. Singer, and T. Chandra. Efficient projections onto the l1-ball for learning in high dimensions. In Proceedings of the 25th international conference on Machine learning, pages 272-279. ACM, 2008.
-
(2008)
Proceedings of the 25th International Conference on Machine Learning
, pp. 272-279
-
-
Duchi, J.1
Shalev-Shwartz, S.2
Singer, Y.3
Chandra, T.4
-
6
-
-
67649666979
-
An introduction to anatomical ROI-based fMRI classification analysis
-
J. A. Etzel, V. Gazzola, and C. Keysers. An introduction to anatomical ROI-based fMRI classification analysis. Brain Research, 1282:114-125, 2009.
-
(2009)
Brain Research
, vol.1282
, pp. 114-125
-
-
Etzel, J.A.1
Gazzola, V.2
Keysers, C.3
-
7
-
-
0035470889
-
Greedy function approximation: A gradient boosting machine
-
J. Friedman. Greedy function approximation: A gradient boosting machine. The Annals of Statistics, pages 1189-1232, 2001.
-
(2001)
The Annals of Statistics
, pp. 1189-1232
-
-
Friedman, J.1
-
11
-
-
33750695296
-
Efficient l1 regularized logistic regression
-
Menlo Park, CA; Cambridge, MA; London; AAAI Press; MIT Press
-
S. Lee, H. Lee, P. Abbeel, and A. Y. Ng. Efficient l1 regularized logistic regression. In Proceedings of the National Conference on Artificial Intelligence, volume 21, page 401. Menlo Park, CA; Cambridge, MA; London; AAAI Press; MIT Press; 1999, 2006.
-
(1999)
Proceedings of the National Conference on Artificial Intelligence
, vol.21
, pp. 401
-
-
Lee, S.1
Lee, H.2
Abbeel, P.3
Ng, A.Y.4
-
12
-
-
85161984052
-
Decoding ipsilateral finger movements from ecog signals in humans
-
Y. Liu, M. Sharma, C. Gaona, J. Breshears, J. Roland, Z. Freudenburg, E. Leuthardt, and K. Q. Weinberger. Decoding ipsilateral finger movements from ecog signals in humans. In Advances in Neural Information Processing Systems, pages 1468-1476, 2010.
-
(2010)
Advances in Neural Information Processing Systems
, pp. 1468-1476
-
-
Liu, Y.1
Sharma, M.2
Gaona, C.3
Breshears, J.4
Roland, J.5
Freudenburg, Z.6
Leuthardt, E.7
Weinberger, K.Q.8
-
13
-
-
33947425580
-
Supervised group lasso with applications to microarray data analysis
-
S. Ma, X. Song, and J. Huang. Supervised group lasso with applications to microarray data analysis. BMC bioinformatics, 8(1):60, 2007.
-
(2007)
BMC Bioinformatics
, vol.8
, Issue.1
, pp. 60
-
-
Ma, S.1
Song, X.2
Huang, J.3
-
14
-
-
37849035696
-
The group lasso for logistic regression
-
L. Meier, S. Van De Geer, and P. Bühlmann. The group lasso for logistic regression. Journal of the Royal Statistical Society: Series B (Statistical Methodology), 70(1):53-71, 2008.
-
(2008)
Journal of the Royal Statistical Society: Series B (Statistical Methodology)
, vol.70
, Issue.1
, pp. 53-71
-
-
Meier, L.1
Van De Geer, S.2
Bühlmann, P.3
-
15
-
-
74549171478
-
Feature selection for ranking using boosted trees
-
ACM
-
F. Pan, T. Converse, D. Ahn, F. Salvetti, and G. Donato. Feature selection for ranking using boosted trees. In Proceedings of the 18th ACM conference on Information and knowledge management, pages 2025-2028. ACM, 2009.
-
(2009)
Proceedings of the 18th ACM Conference on Information and Knowledge Management
, pp. 2025-2028
-
-
Pan, F.1
Converse, T.2
Ahn, D.3
Salvetti, F.4
Donato, G.5
-
17
-
-
24344458137
-
Feature selection based on mutual information criteria of max-dependency, max-relevance, and min-redundancy
-
H. Peng, F. Long, and C. Ding. Feature selection based on mutual information criteria of max-dependency, max-relevance, and min-redundancy. Pattern Analysis and Machine Intelligence, IEEE Transactions on, 27(8):1226-1238, 2005.
-
(2005)
Pattern Analysis and Machine Intelligence, IEEE Transactions on
, vol.27
, Issue.8
, pp. 1226-1238
-
-
Peng, H.1
Long, F.2
Ding, C.3
-
18
-
-
1942418470
-
Grafting: Fast, incremental feature selection by gradient descent in function space
-
S. Perkins, K. Lacker, and J. Theiler. Grafting: Fast, incremental feature selection by gradient descent in function space. The Journal of Machine Learning Research, 3:1333-1356, 2003.
-
(2003)
The Journal of Machine Learning Research
, vol.3
, pp. 1333-1356
-
-
Perkins, S.1
Lacker, K.2
Theiler, J.3
-
21
-
-
35748932917
-
A review of feature selection techniques in bioinformatics
-
Y. Saeys, I. Inza, and P. Larrañaga. A review of feature selection techniques in bioinformatics. bioinformatics, 23(19):2507-2517, 2007.
-
(2007)
Bioinformatics
, vol.23
, Issue.19
, pp. 2507-2517
-
-
Saeys, Y.1
Inza, I.2
Larrañaga, P.3
-
23
-
-
84862024860
-
Feature selection via dependence maximization
-
98888
-
L. Song, A. Smola, A. Gretton, J. Bedo, and K. Borgwardt. Feature selection via dependence maximization. The Journal of Machine Learning Research, 98888:1393-1434, 2012.
-
(2012)
The Journal of Machine Learning Research
, pp. 1393-1434
-
-
Song, L.1
Smola, A.2
Gretton, A.3
Bedo, J.4
Borgwardt, K.5
-
24
-
-
33847749502
-
Airway epithelial gene expression in the diagnostic evaluation of smokers with suspect lung cancer
-
A. Spira, J. E. Beane, V. Shah, K. Steiling, G. Liu, F. Schembri, S. Gilman, Y.-M. Dumas, P. Calner, P. Sebastiani, et al. Airway epithelial gene expression in the diagnostic evaluation of smokers with suspect lung cancer. Nature medicine, 13(3):361-366, 2007.
-
(2007)
Nature Medicine
, vol.13
, Issue.3
, pp. 361-366
-
-
Spira, A.1
Beane, J.E.2
Shah, V.3
Steiling, K.4
Liu, G.5
Schembri, F.6
Gilman, S.7
Dumas, Y.-M.8
Calner, P.9
Sebastiani, P.10
-
25
-
-
80052405487
-
Fast projections onto l1, q-norm balls for grouped feature selection
-
Springer
-
S. Sra. Fast projections onto l1, q-norm balls for grouped feature selection. In Machine Learning and Knowledge Discovery in Databases, pages 305-317. Springer, 2011.
-
(2011)
Machine Learning and Knowledge Discovery in Databases
, pp. 305-317
-
-
Sra, S.1
-
27
-
-
68949154557
-
Feature selection with ensembles, artificial variables, and redundancy elimination
-
E. Tuv, A. Borisov, G. Runger, and K. Torkkola. Feature selection with ensembles, artificial variables, and redundancy elimination. The Journal of Machine Learning Research, 10:1341-1366, 2009.
-
(2009)
The Journal of Machine Learning Research
, vol.10
, pp. 1341-1366
-
-
Tuv, E.1
Borisov, A.2
Runger, G.3
Torkkola, K.4
-
28
-
-
84873421395
-
Parallel boosted regression trees for web search ranking
-
ACM
-
S. Tyree, K. Weinberger, K. Agrawal, and J. Paykin. Parallel boosted regression trees for web search ranking. In WWW, pages 387-396. ACM, 2011.
-
(2011)
WWW
, pp. 387-396
-
-
Tyree, S.1
Weinberger, K.2
Agrawal, K.3
Paykin, J.4
-
29
-
-
84897496647
-
Cost-sensitive tree of classifiers
-
S. Dasgupta and D. Mcallester, editors, JMLR Workshop and Conference Proceedings
-
Z. Xu, M. K., M. Chen, and K. Q. Weinberger. Cost-sensitive tree of classifiers. In S. Dasgupta and D. Mcallester, editors, Proceedings of the 30th International Conference on Machine Learning (ICML-13), volume 28, pages 133-141. JMLR Workshop and Conference Proceedings, 2013.
-
(2013)
Proceedings of the 30th International Conference on Machine Learning (ICML-13)
, vol.28
, pp. 133-141
-
-
Xu M K, Z.1
Chen, M.2
Weinberger, K.Q.3
-
30
-
-
84897488130
-
Anytime representation learning
-
Z. Xu, M. Kusner, G. Huang, and K. Q. Weinberger. Anytime representation learning. In Proceedings of the 30th International Conference on Machine Learning (ICML-13), pages 1076-1084, 2013.
-
Proceedings of the 30th International Conference on Machine Learning (ICML-13)
, vol.2013
, pp. 1076-1084
-
-
Xu, Z.1
Kusner, M.2
Huang, G.3
Weinberger, K.Q.4
-
31
-
-
84867129211
-
The greedy miser: Learning under test-time budgets
-
Z. Xu, K. Weinberger, and O. Chapelle. The greedy miser: Learning under test-time budgets. In ICML, pages 1175-1182, 2012.
-
(2012)
ICML
, pp. 1175-1182
-
-
Xu, Z.1
Weinberger, K.2
Chapelle, O.3
-
32
-
-
84896063238
-
-
arXiv preprint arXiv:1202.0515
-
M. Yamada, W. Jitkrittum, L. Sigal, E. P. Xing, and M. Sugiyama. High-dimensional feature selection by feature-wise non-linear lasso. arXiv preprint arXiv:1202.0515, 2012.
-
(2012)
High-dimensional Feature Selection by Feature-wise Non-linear Lasso
-
-
Yamada, M.1
Jitkrittum, W.2
Sigal, L.3
Xing, E.P.4
Sugiyama, M.5
-
33
-
-
84863420367
-
Multi-stage convex relaxation for learning with sparse regularization
-
D. Koller, D. Schuurmans, Y. Bengio, and L. Bottou, editors
-
T. Zhang. Multi-stage convex relaxation for learning with sparse regularization. In D. Koller, D. Schuurmans, Y. Bengio, and L. Bottou, editors, Advances in Neural Information Processing Systems 21, pages 1929-1936. 2008.
-
(2008)
Advances in Neural Information Processing Systems
, vol.21
, pp. 1929-1936
-
-
Zhang, T.1
-
34
-
-
84890095845
-
Advancing feature selection research
-
Z. Zhao, F. Morstatter, S. Sharma, S. Alelyani, A. Anand, and H. Liu. Advancing feature selection research. ASU Feature Selection Repository, 2010.
-
(2010)
ASU Feature Selection Repository
-
-
Zhao, Z.1
Morstatter, F.2
Sharma, S.3
Alelyani, S.4
Anand, A.5
Liu, H.6
|