메뉴 건너뛰기




Volumn , Issue , 2014, Pages 522-531

Gradient boosted feature selection

Author keywords

feature selection; gradient boosting; large scale

Indexed keywords


EID: 84907030792     PISSN: None     EISSN: None     Source Type: Conference Proceeding    
DOI: 10.1145/2623330.2623635     Document Type: Conference Paper
Times cited : (132)

References (34)
  • 1
    • 0033536012 scopus 로고    scopus 로고
    • Broad patterns of gene expression revealed by clustering analysis of tumor and normal colon tissues probed by oligonucleotide arrays
    • U. Alon, N. Barkai, D. A. Notterman, K. Gish, S. Ybarra, D. Mack, and A. J. Levine. Broad patterns of gene expression revealed by clustering analysis of tumor and normal colon tissues probed by oligonucleotide arrays. Proceedings of the National Academy of Sciences, 96(12):6745-6750, 1999.
    • (1999) Proceedings of the National Academy of Sciences , vol.96 , Issue.12 , pp. 6745-6750
    • Alon, U.1    Barkai, N.2    Notterman, D.A.3    Gish, K.4    Ybarra, S.5    Mack, D.6    Levine, A.J.7
  • 6
    • 67649666979 scopus 로고    scopus 로고
    • An introduction to anatomical ROI-based fMRI classification analysis
    • J. A. Etzel, V. Gazzola, and C. Keysers. An introduction to anatomical ROI-based fMRI classification analysis. Brain Research, 1282:114-125, 2009.
    • (2009) Brain Research , vol.1282 , pp. 114-125
    • Etzel, J.A.1    Gazzola, V.2    Keysers, C.3
  • 7
    • 0035470889 scopus 로고    scopus 로고
    • Greedy function approximation: A gradient boosting machine
    • J. Friedman. Greedy function approximation: A gradient boosting machine. The Annals of Statistics, pages 1189-1232, 2001.
    • (2001) The Annals of Statistics , pp. 1189-1232
    • Friedman, J.1
  • 11
    • 33750695296 scopus 로고    scopus 로고
    • Efficient l1 regularized logistic regression
    • Menlo Park, CA; Cambridge, MA; London; AAAI Press; MIT Press
    • S. Lee, H. Lee, P. Abbeel, and A. Y. Ng. Efficient l1 regularized logistic regression. In Proceedings of the National Conference on Artificial Intelligence, volume 21, page 401. Menlo Park, CA; Cambridge, MA; London; AAAI Press; MIT Press; 1999, 2006.
    • (1999) Proceedings of the National Conference on Artificial Intelligence , vol.21 , pp. 401
    • Lee, S.1    Lee, H.2    Abbeel, P.3    Ng, A.Y.4
  • 13
    • 33947425580 scopus 로고    scopus 로고
    • Supervised group lasso with applications to microarray data analysis
    • S. Ma, X. Song, and J. Huang. Supervised group lasso with applications to microarray data analysis. BMC bioinformatics, 8(1):60, 2007.
    • (2007) BMC Bioinformatics , vol.8 , Issue.1 , pp. 60
    • Ma, S.1    Song, X.2    Huang, J.3
  • 17
    • 24344458137 scopus 로고    scopus 로고
    • Feature selection based on mutual information criteria of max-dependency, max-relevance, and min-redundancy
    • H. Peng, F. Long, and C. Ding. Feature selection based on mutual information criteria of max-dependency, max-relevance, and min-redundancy. Pattern Analysis and Machine Intelligence, IEEE Transactions on, 27(8):1226-1238, 2005.
    • (2005) Pattern Analysis and Machine Intelligence, IEEE Transactions on , vol.27 , Issue.8 , pp. 1226-1238
    • Peng, H.1    Long, F.2    Ding, C.3
  • 18
    • 1942418470 scopus 로고    scopus 로고
    • Grafting: Fast, incremental feature selection by gradient descent in function space
    • S. Perkins, K. Lacker, and J. Theiler. Grafting: Fast, incremental feature selection by gradient descent in function space. The Journal of Machine Learning Research, 3:1333-1356, 2003.
    • (2003) The Journal of Machine Learning Research , vol.3 , pp. 1333-1356
    • Perkins, S.1    Lacker, K.2    Theiler, J.3
  • 20
    • 56449115709 scopus 로고    scopus 로고
    • The group-lasso for generalized linear models: Uniqueness of solutions and efficient algorithms
    • ACM
    • V. Roth and B. Fischer. The group-lasso for generalized linear models: Uniqueness of solutions and efficient algorithms. In Proceedings of the 25th international conference on Machine learning, pages 848-855. ACM, 2008.
    • (2008) Proceedings of the 25th International Conference on Machine Learning , pp. 848-855
    • Roth, V.1    Fischer, B.2
  • 21
    • 35748932917 scopus 로고    scopus 로고
    • A review of feature selection techniques in bioinformatics
    • Y. Saeys, I. Inza, and P. Larrañaga. A review of feature selection techniques in bioinformatics. bioinformatics, 23(19):2507-2517, 2007.
    • (2007) Bioinformatics , vol.23 , Issue.19 , pp. 2507-2517
    • Saeys, Y.1    Inza, I.2    Larrañaga, P.3
  • 25
    • 80052405487 scopus 로고    scopus 로고
    • Fast projections onto l1, q-norm balls for grouped feature selection
    • Springer
    • S. Sra. Fast projections onto l1, q-norm balls for grouped feature selection. In Machine Learning and Knowledge Discovery in Databases, pages 305-317. Springer, 2011.
    • (2011) Machine Learning and Knowledge Discovery in Databases , pp. 305-317
    • Sra, S.1
  • 27
    • 68949154557 scopus 로고    scopus 로고
    • Feature selection with ensembles, artificial variables, and redundancy elimination
    • E. Tuv, A. Borisov, G. Runger, and K. Torkkola. Feature selection with ensembles, artificial variables, and redundancy elimination. The Journal of Machine Learning Research, 10:1341-1366, 2009.
    • (2009) The Journal of Machine Learning Research , vol.10 , pp. 1341-1366
    • Tuv, E.1    Borisov, A.2    Runger, G.3    Torkkola, K.4
  • 28
    • 84873421395 scopus 로고    scopus 로고
    • Parallel boosted regression trees for web search ranking
    • ACM
    • S. Tyree, K. Weinberger, K. Agrawal, and J. Paykin. Parallel boosted regression trees for web search ranking. In WWW, pages 387-396. ACM, 2011.
    • (2011) WWW , pp. 387-396
    • Tyree, S.1    Weinberger, K.2    Agrawal, K.3    Paykin, J.4
  • 31
    • 84867129211 scopus 로고    scopus 로고
    • The greedy miser: Learning under test-time budgets
    • Z. Xu, K. Weinberger, and O. Chapelle. The greedy miser: Learning under test-time budgets. In ICML, pages 1175-1182, 2012.
    • (2012) ICML , pp. 1175-1182
    • Xu, Z.1    Weinberger, K.2    Chapelle, O.3
  • 33
    • 84863420367 scopus 로고    scopus 로고
    • Multi-stage convex relaxation for learning with sparse regularization
    • D. Koller, D. Schuurmans, Y. Bengio, and L. Bottou, editors
    • T. Zhang. Multi-stage convex relaxation for learning with sparse regularization. In D. Koller, D. Schuurmans, Y. Bengio, and L. Bottou, editors, Advances in Neural Information Processing Systems 21, pages 1929-1936. 2008.
    • (2008) Advances in Neural Information Processing Systems , vol.21 , pp. 1929-1936
    • Zhang, T.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.