메뉴 건너뛰기




Volumn 57, Issue , 2014, Pages 148-153

Polynomials, radial basis functions and multilayer perceptron neural network methods in local geoid determination with GPS/levelling

Author keywords

Artificial neural networks; Geoid height; GPS levelling; Interpolation; Polynomials

Indexed keywords

GEODETIC SATELLITES; GLOBAL POSITIONING SYSTEM; INTERPOLATION; LOCAL AREA NETWORKS; NEURAL NETWORKS; POLYNOMIALS; RADIAL BASIS FUNCTION NETWORKS; FUNCTIONS; MULTILAYERS; TRACKING (POSITION);

EID: 84906886736     PISSN: 02632241     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.measurement.2014.08.003     Document Type: Article
Times cited : (30)

References (39)
  • 2
    • 34247262627 scopus 로고    scopus 로고
    • Application of a back-propagation artificial neural network to regional grid-based geoid model generation using GPS and leveling data
    • DOI 10.1061/(ASCE)0733-9453(2007)133:2(81)
    • L. Lin Application of a back-propagation artificial neural network to regional grid-based geoid model generation using GPS and levelling data J. Surv. Eng. 133 2 2007 81 89 (Pubitemid 46605627)
    • (2007) Journal of Surveying Engineering , vol.133 , Issue.2 , pp. 81-89
    • Lin, L.-S.1
  • 3
    • 0037316152 scopus 로고    scopus 로고
    • How accurately can we determine orthometric height differences from GPS and geoid data?
    • DOI 10.1061/(ASCE)0733-9453(2003)129:1(1)
    • G. Fotopoulos, C. Kotsakis, and M.G. Sideris How accurately can we determine orthometric height differences from GPS and geoid data? J. Surv. Eng. 129 1 2003 1 10 (Pubitemid 36199338)
    • (2003) Journal of Surveying Engineering , vol.129 , Issue.1 , pp. 1-10
    • Fotopoulos, G.1    Kotsakis, C.2    Sideris, M.G.3
  • 4
    • 0033398569 scopus 로고    scopus 로고
    • On the adjustment of combined GPS/levelling/geoid networks
    • DOI 10.1007/s001900050261
    • C. Kotsakis, and M.G. Sideris On the adjustment of combined GPS/levelling/geoid networks J. Geodesy 73 8 1999 412 421 (Pubitemid 30024869)
    • (1999) Journal of Geodesy , vol.73 , Issue.8 , pp. 412-421
    • Kotsakis, C.1    Sideris, M.G.2
  • 5
    • 79957648122 scopus 로고    scopus 로고
    • Geometric modeling of the local geoid with the combination of different GPS/leveling data sets in Western Turkey
    • held in Berlin, Germany
    • B. Erol, S, Erol, R.N. Çelik, Geometric modeling of the local geoid with the combination of different GPS/leveling data sets in Western Turkey, in Proceedings CD of the Fifth International Symposium Turkish-German Geodetic Days, held in Berlin, Germany, 2006.
    • (2006) Proceedings CD of the Fifth International Symposium Turkish-German Geodetic Days
    • Erol, B.1
  • 6
    • 0031915704 scopus 로고    scopus 로고
    • Strategies for the accurate determination of orthometric heights from GPS
    • W.E. Featherstone, M.C. Denith, and J.F. Kirby Strategies for the accurate determination of orthometric heights from GPS Surv. Rev. 34 267 1998 278 296
    • (1998) Surv. Rev. , vol.34 , Issue.267 , pp. 278-296
    • Featherstone, W.E.1    Denith, M.C.2    Kirby, J.F.3
  • 8
    • 20644461265 scopus 로고    scopus 로고
    • A hybrid method to determine a local geoid model - Case study
    • Y.Q. Chen, and Z. Luo A hybrid method to determine a local geoid model - case study Earth Planets Space 56 2004 419 427 (Pubitemid 40836924)
    • (2004) Earth, Planets and Space , vol.56 , Issue.4 , pp. 419-427
    • Chen, Y.-Q.1    Luo, Z.2
  • 9
    • 0035425390 scopus 로고    scopus 로고
    • Transformation of ellipsoid heights to local levelling heights, ASCE
    • M. Yanalak, and O. Baykal Transformation of ellipsoid heights to local levelling heights, ASCE J. Surv. Eng. 127 3 2001 1 14
    • (2001) J. Surv. Eng. , vol.127 , Issue.3 , pp. 1-14
    • Yanalak, M.1    Baykal, O.2
  • 10
    • 0345493727 scopus 로고    scopus 로고
    • Determination of local geoid with geometric method: Case study
    • Y. Zhan-ji, and C. Yong-gi Determination of local geoid with geometric method: case study J. Surv. Eng. 125 1999 136 146
    • (1999) J. Surv. Eng. , vol.125 , pp. 136-146
    • Zhan-Ji, Y.1    Yong-Gi, C.2
  • 11
    • 17444419733 scopus 로고    scopus 로고
    • Modelling local GPS/levelling geoid undulations using artificial neural networks
    • DOI 10.1007/s00190-004-0420-3
    • T. Kavzoglu, and M.H. Saka Modelling local GPS/levelling geoid undulations using artificial neural networks J. Geodesy 78 2005 520 527 (Pubitemid 40549086)
    • (2005) Journal of Geodesy , vol.78 , Issue.9 , pp. 520-527
    • Kavzoglu, T.1    Saka, M.H.2
  • 12
    • 33645226756 scopus 로고    scopus 로고
    • GPS-derived geoid using artificial neural network and least squares collocation
    • B. Stopar, T. Ambrozic, M. Kuhar, and G. Turk GPS-derived geoid using artificial neural network and least squares collocation Surv. Rev. 38 300 2006 513 524
    • (2006) Surv. Rev. , vol.38 , Issue.300 , pp. 513-524
    • Stopar, B.1    Ambrozic, T.2    Kuhar, M.3    Turk, G.4
  • 14
    • 1342267338 scopus 로고    scopus 로고
    • New method for transforming global positioning system height into normal height based on neural network
    • DOI 10.1061/(ASCE)0733-9453(2004)130:1(36)
    • W. Hu, Y. Sha, and S. Kuang New method for transforming global positioning system height into normal height based on neural network J. Surv. Eng. 130 1 2004 36 39 (Pubitemid 38259218)
    • (2004) Journal of Surveying Engineering , vol.130 , Issue.1 , pp. 36-39
    • Hu, W.1    Sha, Y.2    Kuang, S.3
  • 16
  • 17
    • 84867378779 scopus 로고    scopus 로고
    • Estimation and evaluation of GPS geoid heights using an artificial neural network model
    • C. Pikridas, A. Fotiou, S. Katsougiannopoulos, and D. Rossikopoulos Estimation and evaluation of GPS geoid heights using an artificial neural network model J. Appl. Geomat. 3 3 2011 183 187
    • (2011) J. Appl. Geomat. , vol.3 , Issue.3 , pp. 183-187
    • Pikridas, C.1    Fotiou, A.2    Katsougiannopoulos, S.3    Rossikopoulos, D.4
  • 18
    • 51849119456 scopus 로고    scopus 로고
    • Geoid-type surface determination using wavelet-based combination of gravimetric quasi/geoid and GPS/levelling data
    • A. Soltanpour, H. Nahavandchi, and W.E. Featherstone Geoid-type surface determination using wavelet-based combination of gravimetric quasi/geoid and GPS/levelling data Geophys. Res. Abstr. 8 2006 04612
    • (2006) Geophys. Res. Abstr. , vol.8 , pp. 04612
    • Soltanpour, A.1    Nahavandchi, H.2    Featherstone, W.E.3
  • 20
    • 0031426506 scopus 로고    scopus 로고
    • Robust estimation and optimal selection of polynomial parameters for the interpolation of GPS geoid heights
    • D. Zhong Robust estimation and optimal selection of polynomial parameters for the interpolation of GPS geoid heights J. Geodesy Berlin 71 9 1997 552 561
    • (1997) J. Geodesy Berlin , vol.71 , Issue.9 , pp. 552-561
    • Zhong, D.1
  • 21
    • 84906876230 scopus 로고    scopus 로고
    • The reliability of surface fitting methods in orthometric height determination from GPS observations
    • S. Uzun, L. Cakir, The reliability of surface fitting methods in orthometric height determination from GPS observations. XXIII International FIG Congress, 2006.
    • (2006) XXIII International FIG Congress
    • Uzun, S.1    Cakir, L.2
  • 22
    • 0025206382 scopus 로고
    • Theory and applications of the multiquadric-biharmonic method. 20 Years of discovery 1968-1988
    • R.L. Hardy Theory of applications of the multiquadratic-biharmonic method: 20 years of discovery 1968-1988 Comput. Math. Appl. 19 8-9 1990 b163 208 (Pubitemid 20668366)
    • (1990) Computers & mathematics with applications , vol.19 , Issue.8-9 , pp. 163-208
    • Hardy, R.L.1
  • 23
    • 0025206382 scopus 로고
    • Theory and applications of the multiquadric-biharmonic method. 20 Years of discovery 1968-1988
    • R.L. Hardy Theory of applications of the multiquadratic-biharmonic method: 20 years of discovery 1968-1988 Comput. Math. Appl. 19 8-9 1990 163 208 (Pubitemid 20668366)
    • (1990) Computers & mathematics with applications , vol.19 , Issue.8-9 , pp. 163-208
    • Hardy, R.L.1
  • 24
    • 0041113612 scopus 로고
    • Repeated knots in least squares multiquadric functions
    • 1Naval Postgraduate School, Monterey CA
    • R. Franke, H. Hagen, G.M. Nielson, Repeated knots in least squares multiquadric functions, Technical Report NPS-MA-94-004, Naval Postgraduate School, Monterey CA, 1993.
    • (1993) Technical Report NPS-MA-94-004
    • Franke, R.1    Hagen, H.2    Nielson, G.M.3
  • 25
    • 85095815155 scopus 로고    scopus 로고
    • Acta Numerica (Cambridge University Press)
    • M.D. Buhmann, Radial Basis Functions, Acta Numerica (Cambridge University Press), 2000 pp. 1-38.
    • (2000) Radial Basis Functions , pp. 1-38
    • Buhmann, M.D.1
  • 26
    • 34250122797 scopus 로고
    • Interpolation of scattered data: Distance matrices and conditionally positive definite functions
    • C.A. Micchelli Interpolation of scattered data: distance matrices and conditionally positive definite functions Const. Approx. 2 1986 11 22
    • (1986) Const. Approx. , vol.2 , pp. 11-22
    • Micchelli, C.A.1
  • 28
    • 0033434521 scopus 로고    scopus 로고
    • An algorithm for selecting a good parameter c in radial basis function interpolation
    • S. Rippa An algorithm for selecting a good parameter c in radial basis function interpolation Adv. Comput. Math. 11 1999 193 210
    • (1999) Adv. Comput. Math. , vol.11 , pp. 193-210
    • Rippa, S.1
  • 29
    • 0036467952 scopus 로고    scopus 로고
    • Newton iteration with multiquadrics for the solution of nonlinear PDEs
    • DOI 10.1016/S0898-1221(01)00296-6, PII S0898122101002966
    • G.E. Fasshauer Newton iteration with multiquadrics for the solution of nonlinear PDEs Comput. Math. Appl. 43 3-5 2002 423 438 (Pubitemid 34104978)
    • (2002) Computers and Mathematics with Applications , vol.43 , Issue.3-5 , pp. 423-438
    • Fasshauer, G.E.1
  • 32
    • 0022471098 scopus 로고
    • Learning representations by back-propagating errors
    • D.E. Rumelhart, G.E. Hinton, and R.J. Williams Learning internal representations by error propagation Parallel Distrib. Process Nat. 323 9 1986 533 536 (Pubitemid 16025374)
    • (1986) Nature , vol.323 , Issue.6088 , pp. 533-536
    • Rumelhart, D.E.1    Hinton, G.E.2    Williams, R.J.3
  • 33
    • 0024880831 scopus 로고
    • Multilayer feedforward networks are universal approximators
    • DOI 10.1016/0893-6080(89)90020-8
    • K. Hornik, M. Stinchcombe, and H. White Multilayer feed for-ward networks are universal approximators Neural Networks 2 5 1989 359 366 (Pubitemid 20609008)
    • (1989) Neural Networks , vol.2 , Issue.5 , pp. 359-366
    • Hornik Kurt1    Stinchcombe Maxwell2    White Halbert3
  • 34
    • 0027242791 scopus 로고
    • Back propagation neural nets with one and two hidden layers
    • J. De Villars, and E. Barnard Back propagation neural nets with one and two hidden layers IEEE Trans. Neural Networks 4 1 1993 136 141
    • (1993) IEEE Trans. Neural Networks , vol.4 , Issue.1 , pp. 136-141
    • De Villars, J.1    Barnard, E.2
  • 35
    • 0003123930 scopus 로고    scopus 로고
    • Forecasting with artificial neural networks: The state of the art
    • PII S0169207097000447
    • G. Zhang, B. Patuwo, and M. Hu Forecasting with artificial neural networks: the state of the art Int. J. Forecast. 14 1998 35 62 (Pubitemid 128340470)
    • (1998) International Journal of Forecasting , vol.14 , Issue.1 , pp. 35-62
    • Zhang, G.1    Eddy Patuwo, B.2    Hu, M.3
  • 36
    • 0028543366 scopus 로고
    • Training feed forward networks with the Marquardt algorithm
    • M.T. Hagan, and M.B. Menhaj Training feed forward networks with the Marquardt algorithm IEEE Trans. Neural Networks 5 6 1994 861 867
    • (1994) IEEE Trans. Neural Networks , vol.5 , Issue.6 , pp. 861-867
    • Hagan, M.T.1    Menhaj, M.B.2
  • 37
    • 0037562812 scopus 로고    scopus 로고
    • Feed forward neural networks modeling for K-P interactions
    • M.Y. El-Bakyr Feed forward neural networks modeling for K-P interactions Chaos Solut. Fract. 18 5 2003 995 1000
    • (2003) Chaos Solut. Fract. , vol.18 , Issue.5 , pp. 995-1000
    • El-Bakyr, M.Y.1
  • 38
    • 27544493548 scopus 로고    scopus 로고
    • Generalized regression neural network in modelling river sediment yield
    • DOI 10.1016/j.advengsoft.2005.05.002, PII S0965997805000888
    • H.K. Cigizoglu, and M. Alp Generalized regression neural network in modeling sediment yield Adv. Eng. Software 37 2006 63 68 (Pubitemid 41543025)
    • (2006) Advances in Engineering Software , vol.37 , Issue.2 , pp. 63-68
    • Cigizoglu, H.K.1    Alp, M.2
  • 39
    • 0034737033 scopus 로고    scopus 로고
    • A study of optimal model lag and spatial inputs to artificial neural network for rainfall forecasting
    • DOI 10.1016/S0022-1694(99)00165-1, PII S0022169499001651
    • K.C. Luk, J.E. Ball, and A. Shrma A study of optimal model lag and spatial inputs to artificial neural network for rainfall forecasting J. Hydrol. 227 1999 56 65 (Pubitemid 30104918)
    • (2000) Journal of Hydrology , vol.227 , Issue.1-4 , pp. 56-65
    • Luk, K.C.1    Ball, J.E.2    Sharma, A.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.