-
2
-
-
79952592696
-
Nanofluid based direct absorption solar collector
-
033102-1
-
Otanicar T.P., Phelan P.E., Prasher R.S., Rosengarten G., Taylor R.A. Nanofluid based direct absorption solar collector. J. Renew. Sustain. Energy 2010, 2. 033102-1.
-
(2010)
J. Renew. Sustain. Energy
, vol.2
-
-
Otanicar, T.P.1
Phelan, P.E.2
Prasher, R.S.3
Rosengarten, G.4
Taylor, R.A.5
-
3
-
-
79955720743
-
Applicability of nanofluids in high flux solar collectors
-
023104-1
-
Taylor R.A., Phelan P.E., Otanicar T.P., Walker C.A., Nguyen M., Trimble S., Prasher R. Applicability of nanofluids in high flux solar collectors. J. Renew. Sustain. Energy 2011, 3. 023104-1.
-
(2011)
J. Renew. Sustain. Energy
, vol.3
-
-
Taylor, R.A.1
Phelan, P.E.2
Otanicar, T.P.3
Walker, C.A.4
Nguyen, M.5
Trimble, S.6
Prasher, R.7
-
4
-
-
78651371988
-
Thermal performance of an open thermosyphon using nanofluids for high temperature evacuated tubular solar collectors
-
Lu L., Liu Z.H., Xiao H.S. Thermal performance of an open thermosyphon using nanofluids for high temperature evacuated tubular solar collectors. Solar Energy 2011, 85:379-387.
-
(2011)
Solar Energy
, vol.85
, pp. 379-387
-
-
Lu, L.1
Liu, Z.H.2
Xiao, H.S.3
-
5
-
-
80052056021
-
Investigation on heat transfer performances of nanofluids in solar collector
-
Li Y., Xie H., Yu W., Li J. Investigation on heat transfer performances of nanofluids in solar collector. Mater. Sci. Forum 2011, 694:33-36.
-
(2011)
Mater. Sci. Forum
, vol.694
, pp. 33-36
-
-
Li, Y.1
Xie, H.2
Yu, W.3
Li, J.4
-
6
-
-
84864283515
-
Evaluation of the effect of nanofluid-based absorbers on direct solar collector
-
Saidur R., Meng T.C., Said Z., Hasanuzzaman M., Kamyar A. Evaluation of the effect of nanofluid-based absorbers on direct solar collector. Int. J. Heat Mass Transfer 2012, 55:589-597.
-
(2012)
Int. J. Heat Mass Transfer
, vol.55
, pp. 589-597
-
-
Saidur, R.1
Meng, T.C.2
Said, Z.3
Hasanuzzaman, M.4
Kamyar, A.5
-
7
-
-
84882269538
-
Analyses of entropy generation and pressure drop for a conventional flat plate solar collector using different types of metal oxide nanofluids
-
Alim M.A., Abdin Z., Saidur R., Hepbasli A., Khairul M.A., Rahim N.A. Analyses of entropy generation and pressure drop for a conventional flat plate solar collector using different types of metal oxide nanofluids. Energy Build. 2013, 66:289-296.
-
(2013)
Energy Build.
, vol.66
, pp. 289-296
-
-
Alim, M.A.1
Abdin, Z.2
Saidur, R.3
Hepbasli, A.4
Khairul, M.A.5
Rahim, N.A.6
-
8
-
-
80053962004
-
Experimental study on the light-heat conversion characteristics of nanofluids
-
He Y., Wang S., Ma J., Tian F., Ren Y. Experimental study on the light-heat conversion characteristics of nanofluids. Nanosci. Nanotechnol. Lett. 2011, 3:494-496.
-
(2011)
Nanosci. Nanotechnol. Lett.
, vol.3
, pp. 494-496
-
-
He, Y.1
Wang, S.2
Ma, J.3
Tian, F.4
Ren, Y.5
-
9
-
-
84882357082
-
-
Proceedings of MNHMT2012 3rd Micro/Nanoscale Heat & Mass Transfer International Conference on March 3-6, Atlanta, Georgia, USA
-
V. Khullar, H. Tyagi, P.E. Phelan, T.P. Otanicar, H. Singh, R.A. Taylor, Solar energy harvesting using nanofluids-based concentrating solar collector, in: Proceedings of MNHMT2012 3rd Micro/Nanoscale Heat & Mass Transfer International Conference on March 3-6, Atlanta, Georgia, USA, 2012.
-
(2012)
Solar energy harvesting using nanofluids-based concentrating solar collector
-
-
Khullar, V.1
Tyagi, H.2
Phelan, P.E.3
Otanicar, T.P.4
Singh, H.5
Taylor, R.A.6
-
10
-
-
77955180865
-
Predicted efficiency of a low-temperature nanofluid - based direct absorption solar collector
-
041004-1
-
Tyagi H., Phelan P., Prasher R. Predicted efficiency of a low-temperature nanofluid - based direct absorption solar collector. J. Solar Energy Eng. 2009, 131. 041004-1.
-
(2009)
J. Solar Energy Eng.
, vol.131
-
-
Tyagi, H.1
Phelan, P.2
Prasher, R.3
-
11
-
-
84869862190
-
A review of the applications of nanofluids in solar energy
-
Mahian O., Kianifar A., Kalogirou Soteris A., Pop I., Wongwises S. A review of the applications of nanofluids in solar energy. Int. J. Heat Mass Transfer. 2013, 57:582-594.
-
(2013)
Int. J. Heat Mass Transfer.
, vol.57
, pp. 582-594
-
-
Mahian, O.1
Kianifar, A.2
Kalogirou, S.A.3
Pop, I.4
Wongwises, S.5
-
12
-
-
33645667882
-
A new parameter to control heat transport in nanofluids: surface charge state of the particle in suspension
-
Lee D., Kim J.W., Kim B.G. A new parameter to control heat transport in nanofluids: surface charge state of the particle in suspension. J. Phys. Chem. B 2006, 110:4323-4328.
-
(2006)
J. Phys. Chem. B
, vol.110
, pp. 4323-4328
-
-
Lee, D.1
Kim, J.W.2
Kim, B.G.3
-
14
-
-
63749091682
-
Investigation of pH and SDBS on enhancement of thermal conductivity in nanofluids
-
Wang X.J., Zhu D.S., Yang S. Investigation of pH and SDBS on enhancement of thermal conductivity in nanofluids. Chem. Phys. Lett. 2009, 470:107-111.
-
(2009)
Chem. Phys. Lett.
, vol.470
, pp. 107-111
-
-
Wang, X.J.1
Zhu, D.S.2
Yang, S.3
-
15
-
-
73249141529
-
Stability and thermal conductivity of nanofluids of tin dioxide synthesized via microwave-induced combustion route
-
Habibzadeh S., Beydokhti A.K., Khodadadi A.A., Mortazavi Y., Omanovic S., Niassar M.S. Stability and thermal conductivity of nanofluids of tin dioxide synthesized via microwave-induced combustion route. Chem. Eng. J. 2010, 156:471-478.
-
(2010)
Chem. Eng. J.
, vol.156
, pp. 471-478
-
-
Habibzadeh, S.1
Beydokhti, A.K.2
Khodadadi, A.A.3
Mortazavi, Y.4
Omanovic, S.5
Niassar, M.S.6
-
16
-
-
78349281174
-
Effects of particle surface charge, species, concentration and dispersion method on the thermal conductivity of nanofluids
-
Gowda R., Sun H., Wang P., Charmchi M., Gao F., Gu Z. Effects of particle surface charge, species, concentration and dispersion method on the thermal conductivity of nanofluids. Adv. Mech. Eng. 2010, 1-10.
-
(2010)
Adv. Mech. Eng.
, pp. 1-10
-
-
Gowda, R.1
Sun, H.2
Wang, P.3
Charmchi, M.4
Gao, F.5
Gu, Z.6
-
17
-
-
0036537378
-
Thermal conductivity enhancement of suspensions containing nanosized alumina particles
-
Xie H., Wang J., Xi T., Liu Y., Ai F., Wu Q. Thermal conductivity enhancement of suspensions containing nanosized alumina particles. J. Appl. Phys. 2002, 91:4568-4570.
-
(2002)
J. Appl. Phys.
, vol.91
, pp. 4568-4570
-
-
Xie, H.1
Wang, J.2
Xi, T.3
Liu, Y.4
Ai, F.5
Wu, Q.6
-
19
-
-
33746549887
-
The performance of a cylindrical solar water heater
-
Al-Madani H. The performance of a cylindrical solar water heater. Renew. Energy 2006, 31:1751-1763.
-
(2006)
Renew. Energy
, vol.31
, pp. 1751-1763
-
-
Al-Madani, H.1
-
20
-
-
79958016364
-
A review of nanofluid stability properties and characterization in stationary conditions
-
Ghadimi A., Saidur R., Metselaar H.S.C. A review of nanofluid stability properties and characterization in stationary conditions. Int. J. Heat Mass Transfer. 2011, 54:4051-4068.
-
(2011)
Int. J. Heat Mass Transfer.
, vol.54
, pp. 4051-4068
-
-
Ghadimi, A.1
Saidur, R.2
Metselaar, H.S.C.3
-
22
-
-
79955809187
-
Fabrication and characterization of novel antifouling nanofiltration membrane prepared from oxidized multiwalled carbon nanotube/polyether sulfone nanocomposite
-
Vatanpour V., Madaeni S.S., Moradian R., Zinadini S., Astinchap B. Fabrication and characterization of novel antifouling nanofiltration membrane prepared from oxidized multiwalled carbon nanotube/polyether sulfone nanocomposite. J. Membr. Sci. 2011, 375:284-294.
-
(2011)
J. Membr. Sci.
, vol.375
, pp. 284-294
-
-
Vatanpour, V.1
Madaeni, S.S.2
Moradian, R.3
Zinadini, S.4
Astinchap, B.5
-
24
-
-
0000975839
-
-
Bales B.L., Messina L., Vidal A., Peric M. J. Phys. Chem. B 1998, 102:10347.
-
(1998)
J. Phys. Chem. B
, vol.102
, pp. 10347
-
-
Bales, B.L.1
Messina, L.2
Vidal, A.3
Peric, M.4
-
25
-
-
0032557485
-
-
Liu J., Rinzler A.G., Dai H.J., Hafner J.H., Bradley R.K., Boul P.J., et al. Fullerene Pipes Sci. 1998, 280:1253-1256.
-
(1998)
Fullerene Pipes Sci.
, vol.280
, pp. 1253-1256
-
-
Liu, J.1
Rinzler, A.G.2
Dai, H.J.3
Hafner, J.H.4
Bradley, R.K.5
Boul, P.J.6
-
26
-
-
34247544650
-
Evaluation on dispersion behavior of the aqueous copper nano-suspensions
-
Li X.F., Zhu D.S., Wang X.J. Evaluation on dispersion behavior of the aqueous copper nano-suspensions. J. Colloid. Interface Sci. 2007, 310:456-463.
-
(2007)
J. Colloid. Interface Sci.
, vol.310
, pp. 456-463
-
-
Li, X.F.1
Zhu, D.S.2
Wang, X.J.3
-
27
-
-
84906882037
-
-
ASHRAE Standard 86-93, Methods of testing to determine the thermal performance of solar collectors, Atlanta. GA. USA
-
ASHRAE Standard 86-93, Methods of testing to determine the thermal performance of solar collectors, Atlanta. GA. USA. 1986.
-
(1986)
-
-
-
28
-
-
10944274134
-
A new method for the measurement of solar collector time constant
-
Hou H.J., Wang Z.F., Wang R.Z., Wang P.M. A new method for the measurement of solar collector time constant. Renew. Energy 2005, 30:855-865.
-
(2005)
Renew. Energy
, vol.30
, pp. 855-865
-
-
Hou, H.J.1
Wang, Z.F.2
Wang, R.Z.3
Wang, P.M.4
-
29
-
-
79957978849
-
Influence of pH on the stability characteristics of nanofluid
-
Huang J., Wang X. Influence of pH on the stability characteristics of nanofluid. IEEE 2009, 4371-4374.
-
(2009)
IEEE
, pp. 4371-4374
-
-
Huang, J.1
Wang, X.2
-
30
-
-
13444258716
-
Theoretical approach of a flat plate solar collector with clear and low-iron glass covers taking into account the spectral absorption and emission within glass covers layer
-
Khoukhi M., Maruyama S. Theoretical approach of a flat plate solar collector with clear and low-iron glass covers taking into account the spectral absorption and emission within glass covers layer. Renewable Energy 2005, 30:1177-1194.
-
(2005)
Renewable Energy
, vol.30
, pp. 1177-1194
-
-
Khoukhi, M.1
Maruyama, S.2
-
31
-
-
84906882038
-
-
Heat transfer tables, Forced convective heat transfer equations on the cylinder, chemical-eng.iauq.ac.ir.
-
Heat transfer tables, Forced convective heat transfer equations on the cylinder, chemical-eng.iauq.ac.ir.
-
-
-
-
32
-
-
84906882039
-
-
Heat transfer tables, Free convective heat transfer equations in the cylinder, fa.wikibooks.org/wiki/Free convection.
-
Heat transfer tables, Free convective heat transfer equations in the cylinder, fa.wikibooks.org/wiki/Free convection.
-
-
-
-
33
-
-
0019478428
-
Fully developed laminar convection from a helical coil
-
Manlapaz R.L., Churchill S.W. Fully developed laminar convection from a helical coil. Chem. Eng. Commun. 1981, 97:185.
-
(1981)
Chem. Eng. Commun.
, vol.97
, pp. 185
-
-
Manlapaz, R.L.1
Churchill, S.W.2
-
34
-
-
33750694638
-
Heat transfer characteristics of nanofluids: a review
-
Wang X.Q., Mujumdar A.S. Heat transfer characteristics of nanofluids: a review. Int. J. Therm. Sci. 2007, 46:1-19.
-
(2007)
Int. J. Therm. Sci.
, vol.46
, pp. 1-19
-
-
Wang, X.Q.1
Mujumdar, A.S.2
-
35
-
-
33748307724
-
Effective thermal conductivity and thermal diffusivity of nanofluids containing spherical and cylindrical nanoparticles
-
Zhang X., Gu H., Fujii M. Effective thermal conductivity and thermal diffusivity of nanofluids containing spherical and cylindrical nanoparticles. J. Appl. Phys. 2006, 100:044325.
-
(2006)
J. Appl. Phys.
, vol.100
, pp. 044325
-
-
Zhang, X.1
Gu, H.2
Fujii, M.3
-
36
-
-
0032043092
-
Hydrodynamic and heat transfer study of dispersed fluids with submicron metallic oxide particles
-
Pak B.C., Cho Y.I. Hydrodynamic and heat transfer study of dispersed fluids with submicron metallic oxide particles. Exp. Heat Transfer. 1998, 11:151-170.
-
(1998)
Exp. Heat Transfer.
, vol.11
, pp. 151-170
-
-
Pak, B.C.1
Cho, Y.I.2
-
37
-
-
0012452966
-
The viscosity of concentrated suspensions and solutions
-
Brinkman H.C. The viscosity of concentrated suspensions and solutions. Chem. Phys. 1952, 20:571.
-
(1952)
Chem. Phys.
, vol.20
, pp. 571
-
-
Brinkman, H.C.1
-
39
-
-
84906882041
-
-
ISOELECTRIC POINT DETERMINATION (horiba.com/us/particle).
-
ISOELECTRIC POINT DETERMINATION (horiba.com/us/particle).
-
-
-
|