메뉴 건너뛰기




Volumn 66, Issue , 2014, Pages 35-41

Enzyme adsorption, precipitation and crosslinking of glucose oxidase and laccase on polyaniline nanofibers for highly stable enzymatic biofuel cells

Author keywords

Enzymatic biofuel cells; Enzyme adsorption, precipitation and crosslinking (EAPC); Glucose oxidase; Laccase; Polyaniline nanofibers

Indexed keywords

ADSORPTION; BIOFUELS; CATHODES; GLUCOSE OXIDASE; GLUCOSE SENSORS; MILITARY APPLICATIONS; NANOFIBERS; POLYANILINE;

EID: 84906858668     PISSN: 01410229     EISSN: 18790909     Source Type: Journal    
DOI: 10.1016/j.enzmictec.2014.08.001     Document Type: Article
Times cited : (47)

References (25)
  • 1
    • 7544227821 scopus 로고    scopus 로고
    • Enzymatic biofuel cells for implantable and microscale devices
    • Barton S.C., Gallaway J., Atanassov P. Enzymatic biofuel cells for implantable and microscale devices. Chem Rev 2004, 104:4867-4886.
    • (2004) Chem Rev , vol.104 , pp. 4867-4886
    • Barton, S.C.1    Gallaway, J.2    Atanassov, P.3
  • 2
    • 79951695669 scopus 로고    scopus 로고
    • Recent progress and continuing challenges in bio-fuel cells. Part I: Enzymatic cells
    • Osman M.H., Shah A.A., Walsh F.C. Recent progress and continuing challenges in bio-fuel cells. Part I: Enzymatic cells. Biosens Bioelectron 2011, 26:3087-3102.
    • (2011) Biosens Bioelectron , vol.26 , pp. 3087-3102
    • Osman, M.H.1    Shah, A.A.2    Walsh, F.C.3
  • 7
    • 33749857455 scopus 로고    scopus 로고
    • Carbon-nanotube-based glucose/O-2 biofuel cells
    • Yan Y.M., Zheng W., Su L., Mao L.Q. Carbon-nanotube-based glucose/O-2 biofuel cells. Adv Mater 2006, 18:2639-2643.
    • (2006) Adv Mater , vol.18 , pp. 2639-2643
    • Yan, Y.M.1    Zheng, W.2    Su, L.3    Mao, L.Q.4
  • 8
    • 33645891453 scopus 로고    scopus 로고
    • Challenges in biocatalysis for enzyme-based biofuel cells
    • Kim J., Jia H.F., Wang P. Challenges in biocatalysis for enzyme-based biofuel cells. Biotechnol Adv 2006, 24:296-308.
    • (2006) Biotechnol Adv , vol.24 , pp. 296-308
    • Kim, J.1    Jia, H.F.2    Wang, P.3
  • 9
    • 53949106970 scopus 로고    scopus 로고
    • Nanobiocatalysis and its potential applications
    • Kim J.B., Grate J.W., Wang P. Nanobiocatalysis and its potential applications. Trends Biotechnol 2008, 26:639-646.
    • (2008) Trends Biotechnol , vol.26 , pp. 639-646
    • Kim, J.B.1    Grate, J.W.2    Wang, P.3
  • 10
    • 31544446600 scopus 로고    scopus 로고
    • Syntheses and applications of conducting polymer polyaniline nanofibers
    • Huang J.X. Syntheses and applications of conducting polymer polyaniline nanofibers. Pure Appl Chem 2006, 78:15-27.
    • (2006) Pure Appl Chem , vol.78 , pp. 15-27
    • Huang, J.X.1
  • 11
    • 84893514240 scopus 로고    scopus 로고
    • Highly stabilized lipase in polyaniline nanofibers for surfactant-mediated esterification of ibuprofen
    • Hong S.G., Kim H.S., Kim J. Highly stabilized lipase in polyaniline nanofibers for surfactant-mediated esterification of ibuprofen. Langmuir 2014, 30:911-915.
    • (2014) Langmuir , vol.30 , pp. 911-915
    • Hong, S.G.1    Kim, H.S.2    Kim, J.3
  • 12
    • 79955480853 scopus 로고    scopus 로고
    • Immobilization of glucose oxidase into polyaniline nanofiber matrix for biofuel cell applications
    • Kim H., Lee I., Kwon Y., Kim B.C., Ha S., Lee J.H., et al. Immobilization of glucose oxidase into polyaniline nanofiber matrix for biofuel cell applications. Biosens Bioelectron 2011, 26:3908-3913.
    • (2011) Biosens Bioelectron , vol.26 , pp. 3908-3913
    • Kim, H.1    Lee, I.2    Kwon, Y.3    Kim, B.C.4    Ha, S.5    Lee, J.H.6
  • 13
    • 41149117865 scopus 로고    scopus 로고
    • Development of magnetically separable polyaniline nanofibers for enzyme immobilization and recovery
    • Lee G., Kim J., Lee J.H. Development of magnetically separable polyaniline nanofibers for enzyme immobilization and recovery. Enzyme Microb Technol 2008, 42:466-472.
    • (2008) Enzyme Microb Technol , vol.42 , pp. 466-472
    • Lee, G.1    Kim, J.2    Lee, J.H.3
  • 14
    • 49149141580 scopus 로고
    • The effect of induced lignification on the resistance of wheat cell-walls to fungal degradation
    • Ride J.P. The effect of induced lignification on the resistance of wheat cell-walls to fungal degradation. Physiol Plant Pathol 1980, 16:187-192.
    • (1980) Physiol Plant Pathol , vol.16 , pp. 187-192
    • Ride, J.P.1
  • 16
    • 84867086523 scopus 로고    scopus 로고
    • Glucose biofuel cell construction based on enzyme, graphite particle and redox mediator compression
    • Zebda A., Gondran C., Cinquin P., Cosnier S. Glucose biofuel cell construction based on enzyme, graphite particle and redox mediator compression. Sens Actuators B: Chem 2012, 173:760-764.
    • (2012) Sens Actuators B: Chem , vol.173 , pp. 760-764
    • Zebda, A.1    Gondran, C.2    Cinquin, P.3    Cosnier, S.4
  • 17
    • 85067755284 scopus 로고    scopus 로고
    • , PDB ID: 1CF3, [accessed August 2014].
    • PDB ID: 1CF3, [accessed August 2014]. http://www.ncbi.nlm.nih.gov/.
  • 18
    • 85067772734 scopus 로고    scopus 로고
    • , PDB ID: 1GYC, [accessed August 2014].
    • PDB ID: 1GYC, [accessed August 2014]. http://www.ncbi.nlm.nih.gov/.
  • 19
    • 84907034314 scopus 로고
    • Strategy for stabilizing enzymes part one: increasing stability of enzymes via their multi-point interaction with a support
    • Mozhaev V.V., Melik-nubarov N.S., Sergeeva M.V., Šikšnis V., Martinek K. Strategy for stabilizing enzymes part one: increasing stability of enzymes via their multi-point interaction with a support. Biocatal Biotransform 1990, 3:179-187.
    • (1990) Biocatal Biotransform , vol.3 , pp. 179-187
    • Mozhaev, V.V.1    Melik-nubarov, N.S.2    Sergeeva, M.V.3    Šikšnis, V.4    Martinek, K.5
  • 20
    • 0017670982 scopus 로고
    • Principles of enzyme stabilization. 1. Increase in thermostability of enzymes covalently bound to a complementary surface of a polymer support in a multipoint fashion
    • Martinek K., Klibanov A.M., Goldmacher V.S., Berezin I.V. Principles of enzyme stabilization. 1. Increase in thermostability of enzymes covalently bound to a complementary surface of a polymer support in a multipoint fashion. Biochim Biophys Acta 1977, 485:1-12.
    • (1977) Biochim Biophys Acta , vol.485 , pp. 1-12
    • Martinek, K.1    Klibanov, A.M.2    Goldmacher, V.S.3    Berezin, I.V.4
  • 21
    • 54549113065 scopus 로고    scopus 로고
    • Immobilization of glucose oxidase on carbon paper electrodes modified with conducting polymer and its application to a glucose fuel cell
    • Kuwahara T., Ohta H., Kondo M., Shimomura M. Immobilization of glucose oxidase on carbon paper electrodes modified with conducting polymer and its application to a glucose fuel cell. Bioelectrochemistry 2008, 74:66-72.
    • (2008) Bioelectrochemistry , vol.74 , pp. 66-72
    • Kuwahara, T.1    Ohta, H.2    Kondo, M.3    Shimomura, M.4
  • 22
    • 84863317977 scopus 로고    scopus 로고
    • Biofuel cells enhanced enzymatic bioelectrocatalysis
    • Meredith M.T., Minteer S.D. Biofuel cells enhanced enzymatic bioelectrocatalysis. Annu Rev Anal Chem 2012, 5:157-179.
    • (2012) Annu Rev Anal Chem , vol.5 , pp. 157-179
    • Meredith, M.T.1    Minteer, S.D.2
  • 24
    • 0042768479 scopus 로고    scopus 로고
    • Disposable glucose sensors for flow injection analysis using substituted 1,4-benzoquinone mediators
    • Lau K.T., de Fortescu S.A.L., Murphy L.J., Slater J.M. Disposable glucose sensors for flow injection analysis using substituted 1,4-benzoquinone mediators. Electroanalysis 2003, 15:975-981.
    • (2003) Electroanalysis , vol.15 , pp. 975-981
    • Lau, K.T.1    de Fortescu, S.A.L.2    Murphy, L.J.3    Slater, J.M.4
  • 25
    • 34247241110 scopus 로고    scopus 로고
    • A biopolymer composite that catalyzes the reduction of oxygen to water
    • Fei J.F., Song H.K., Palmore G.T.R. A biopolymer composite that catalyzes the reduction of oxygen to water. Chem Mater 2007, 19:1565-1570.
    • (2007) Chem Mater , vol.19 , pp. 1565-1570
    • Fei, J.F.1    Song, H.K.2    Palmore, G.T.R.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.