메뉴 건너뛰기




Volumn 145, Issue , 2014, Pages 336-352

MOEA/D with Baldwinian learning inspired by the regularity property of continuous multiobjective problem

Author keywords

Memetic strategy; MOEA D; Multiobjective optimization; Regularity property

Indexed keywords

EVOLUTIONARY ALGORITHMS; PARETO PRINCIPLE;

EID: 84906818172     PISSN: 09252312     EISSN: 18728286     Source Type: Journal    
DOI: 10.1016/j.neucom.2014.05.025     Document Type: Article
Times cited : (39)

References (40)
  • 1
    • 0004140075 scopus 로고    scopus 로고
    • Thiele, Spea2: improving the strength Pareto evolutionary algorithm for multiobjective optimization, in: Proceedings of Evolutionary Methods for Design Optimization and Control with Applications to Industrial Problems
    • E. Zitzler, M. Laumanns, L. Thiele, Spea2: improving the strength Pareto evolutionary algorithm for multiobjective optimization, in: Proceedings of Evolutionary Methods for Design Optimization and Control with Applications to Industrial Problems, 2001, pp. 95-100.
    • (2001) , pp. 95-100
    • Zitzler, E.1    Laumanns, M.L.2
  • 2
    • 0036530772 scopus 로고    scopus 로고
    • A fast and elitist multiobjective genetic algorithm. NSGA-II
    • Deb K., Agrawal S., Pratap A., Meyarivan T. A fast and elitist multiobjective genetic algorithm. NSGA-II. IEEE Trans. Evol. Comput. 2002, 6(2):182-197.
    • (2002) IEEE Trans. Evol. Comput. , vol.6 , Issue.2 , pp. 182-197
    • Deb, K.1    Agrawal, S.2    Pratap, A.3    Meyarivan, T.4
  • 4
    • 34548108555 scopus 로고    scopus 로고
    • MOEA/D. a multi-objective evolutionary algorithm based on decomposition
    • Zhang Q., Li H. MOEA/D. a multi-objective evolutionary algorithm based on decomposition. IEEE Trans. Evol. Comput. 2007, 11(6):712-731.
    • (2007) IEEE Trans. Evol. Comput. , vol.11 , Issue.6 , pp. 712-731
    • Zhang, Q.1    Li, H.2
  • 5
    • 84861827549 scopus 로고    scopus 로고
    • MOEA/D with an ensemble of neighbourhood sizes
    • Zhao S., Suganthan P., Zhang Q. MOEA/D with an ensemble of neighbourhood sizes. IEEE Trans. Evol. Comput. 2012, 16(3):442-446.
    • (2012) IEEE Trans. Evol. Comput. , vol.16 , Issue.3 , pp. 442-446
    • Zhao, S.1    Suganthan, P.2    Zhang, Q.3
  • 7
    • 84867804047 scopus 로고    scopus 로고
    • An evolutionary multiobjective sleep-scheduling scheme for differentiated coverage in wireless sensor networks
    • Sengupta S., Das S., Nasir M., Vasilakos A., Pedrycz W. An evolutionary multiobjective sleep-scheduling scheme for differentiated coverage in wireless sensor networks. IEEE Trans. Syst. Man Cybern. Part C 2012, 42(6):1093-1102.
    • (2012) IEEE Trans. Syst. Man Cybern. Part C , vol.42 , Issue.6 , pp. 1093-1102
    • Sengupta, S.1    Das, S.2    Nasir, M.3    Vasilakos, A.4    Pedrycz, W.5
  • 10
    • 40249102027 scopus 로고    scopus 로고
    • A regularity model-based multiobjective estimation of distribution algorithm. Rm-meda
    • Zhang Q., Zhou A., Jin Y. A regularity model-based multiobjective estimation of distribution algorithm. Rm-meda. IEEE Trans. Evol. Comput. 2008, 12(1):41-63.
    • (2008) IEEE Trans. Evol. Comput. , vol.12 , Issue.1 , pp. 41-63
    • Zhang, Q.1    Zhou, A.2    Jin, Y.3
  • 11
    • 70349855195 scopus 로고    scopus 로고
    • Approximating the set of Pareto-optimal solutions in both the decision and objective spaces by an estimation of distribution algorithm
    • Zhou A., Zhang Q., Jin Y. Approximating the set of Pareto-optimal solutions in both the decision and objective spaces by an estimation of distribution algorithm. IEEE Trans. Evol. Comput. 2009, 13(5):1167-1189.
    • (2009) IEEE Trans. Evol. Comput. , vol.13 , Issue.5 , pp. 1167-1189
    • Zhou, A.1    Zhang, Q.2    Jin, Y.3
  • 12
    • 0001410750 scopus 로고
    • A new factor in evolution
    • Baldwin J. A new factor in evolution. Am. Nat. 1896, 30:441-451.
    • (1896) Am. Nat. , vol.30 , pp. 441-451
    • Baldwin, J.1
  • 13
    • 0000211184 scopus 로고
    • How learning can guide evolution
    • Hinton G., Nowlan S. How learning can guide evolution. Complex Syst. 1987, 1:495-502.
    • (1987) Complex Syst. , vol.1 , pp. 495-502
    • Hinton, G.1    Nowlan, S.2
  • 14
    • 75149158852 scopus 로고    scopus 로고
    • Baldwinian learning in clonal selection algorithm for optimization
    • Gong M., Jiao L., Zhang L. Baldwinian learning in clonal selection algorithm for optimization. Inf. Sci. 2010, 180:1218-1236.
    • (2010) Inf. Sci. , vol.180 , pp. 1218-1236
    • Gong, M.1    Jiao, L.2    Zhang, L.3
  • 15
    • 84861872018 scopus 로고    scopus 로고
    • Multi-objective immune algorithm with Baldwinian learning
    • Qi Y., Liu F., Liu M., Gong M., Jiao L. Multi-objective immune algorithm with Baldwinian learning. Appl. Soft Comput. 2012, 12:2654-2674.
    • (2012) Appl. Soft Comput. , vol.12 , pp. 2654-2674
    • Qi, Y.1    Liu, F.2    Liu, M.3    Gong, M.4    Jiao, L.5
  • 16
    • 47749112044 scopus 로고    scopus 로고
    • Multi-objective immune algorithm with nondominated neighbor-based selection: NNIA
    • Gong M., Jiao L., Du H., Bo L. Multi-objective immune algorithm with nondominated neighbor-based selection: NNIA. Evol. Comput. 2008, 16:225-255.
    • (2008) Evol. Comput. , vol.16 , pp. 225-255
    • Gong, M.1    Jiao, L.2    Du, H.3    Bo, L.4
  • 17
    • 78649251519 scopus 로고    scopus 로고
    • Adaptive ranks and k-nearest neighbor list based multiobjective immune algorithm
    • Yang D., Jiao L., Gong M., Feng J. Adaptive ranks and k-nearest neighbor list based multiobjective immune algorithm. Comput. Intell. 2010, 26:359-385.
    • (2010) Comput. Intell. , vol.26 , pp. 359-385
    • Yang, D.1    Jiao, L.2    Gong, M.3    Feng, J.4
  • 18
    • 67349108023 scopus 로고    scopus 로고
    • Multiobjective optimization problems with complicated Pareto sets, MOEA/D and NSGA-II
    • Li H., Zhang Q. Multiobjective optimization problems with complicated Pareto sets, MOEA/D and NSGA-II. IEEE Trans. Evol. Comput. 2009, 12(2):284-302.
    • (2009) IEEE Trans. Evol. Comput. , vol.12 , Issue.2 , pp. 284-302
    • Li, H.1    Zhang, Q.2
  • 19
    • 77955867216 scopus 로고    scopus 로고
    • Simultaneous use of different scalarizing functions in MOEA/D, in: Genetic and Evolutionary Computation Conference
    • H. Ishibuchi, Y. Sakane, N. Tsukamoto, Y. Nojima
    • H. Ishibuchi, Y. Sakane, N. Tsukamoto, Y. Nojima, Simultaneous use of different scalarizing functions in MOEA/D, in: Genetic and Evolutionary Computation Conference, 2010, pp. 519-526.
    • (2010) , pp. 519-526
  • 20
    • 79953278898 scopus 로고    scopus 로고
    • Decomposition-based memetic algorithm for multi-objective capacitated arc routing problem
    • Mei Y., Tang K., Yao X. Decomposition-based memetic algorithm for multi-objective capacitated arc routing problem. IEEE Trans. Evol. Comput. 2011, 15(2):151-165.
    • (2011) IEEE Trans. Evol. Comput. , vol.15 , Issue.2 , pp. 151-165
    • Mei, Y.1    Tang, K.2    Yao, X.3
  • 21
    • 84873710692 scopus 로고    scopus 로고
    • An Improved NSGA-II Procedure for Many-objective Optimization
    • Part I: Solving Problems with Box Constraints, Technical Report 2012009, KanGAL
    • K. Deb, H. Jain, An Improved NSGA-II Procedure for Many-objective Optimization, Part I: Solving Problems with Box Constraints, Technical Report 2012009, KanGAL, 2012.
    • (2012)
    • Deb, K.1    Jain, H.2
  • 23
    • 76149138011 scopus 로고    scopus 로고
    • A new local search strategy for memetic multiobjective evolutionary algorithms. HCS
    • Lara A., Sanchez G., Coello Coello C., Schutze O. A new local search strategy for memetic multiobjective evolutionary algorithms. HCS. IEEE Trans. Evol. Comput. 2010, 14(1):112-132.
    • (2010) IEEE Trans. Evol. Comput. , vol.14 , Issue.1 , pp. 112-132
    • Lara, A.1    Sanchez, G.2    Coello Coello, C.3    Schutze, O.4
  • 24
    • 84901403917 scopus 로고    scopus 로고
    • Connectedness, regularity and the success of local search in evolutionary multi-objective optimization
    • Y. Jin, B. Sendhoff, Connectedness, regularity and the success of local search in evolutionary multi-objective optimization, in: Congress on Evolutionary Computation, 2003, pp. 1910-1917.
    • (2003) in: Congress on Evolutionary Computation , pp. 1910-1917
    • Jin, Y.1    Sendhoff, B.2
  • 25
    • 0348139702 scopus 로고    scopus 로고
    • Dimension reduction by local principal component analysis
    • Kambhatla N., Leen T. Dimension reduction by local principal component analysis. Neural Comput. 1997, 9(7):1493-1516.
    • (1997) Neural Comput. , vol.9 , Issue.7 , pp. 1493-1516
    • Kambhatla, N.1    Leen, T.2
  • 26
    • 84906812011 scopus 로고    scopus 로고
    • Recent Advances in Memetic Algorithms, Springer, Ch. Memetic Evolutionary Algorithms
    • W. Hart, N. Krasnogor, J. Smith, Recent Advances in Memetic Algorithms, Springer, 2004, Ch. Memetic Evolutionary Algorithms, pp. 3-30.
    • (2004) , pp. 3-30
    • Hart, W.1    Krasnogor, N.2    Smith, J.3
  • 27
    • 0035374993 scopus 로고    scopus 로고
    • Self-adaptive genetic algorithms with simulated binary crossover
    • Deb K., Beyer H. Self-adaptive genetic algorithms with simulated binary crossover. Evol. Comput. 2001, 9(2):197-221.
    • (2001) Evol. Comput. , vol.9 , Issue.2 , pp. 197-221
    • Deb, K.1    Beyer, H.2
  • 30
    • 24344480582 scopus 로고    scopus 로고
    • Improving PSO-based multi-objective optimization using crowding, mutation and ε-dominance, in: International Conference on Evolutionary Multi-Criterion Optimization, EMO 2005
    • M. Sierra, C. Coello, Improving PSO-based multi-objective optimization using crowding, mutation and ε-dominance, in: International Conference on Evolutionary Multi-Criterion Optimization, EMO 2005, 2005, pp. 505-519.
    • (2005) , pp. 505-519
    • Sierra, M.1    Coello, C.2
  • 31
    • 0034199979 scopus 로고    scopus 로고
    • Comparison of multiobjective evolutionary algorithms. empirical results
    • Zitzler E., Deb K., Thiele L. Comparison of multiobjective evolutionary algorithms. empirical results. Evol. Comput. 2000, 8(2):173-195.
    • (2000) Evol. Comput. , vol.8 , Issue.2 , pp. 173-195
    • Zitzler, E.1    Deb, K.2    Thiele, L.3
  • 33
    • 70449915988 scopus 로고    scopus 로고
    • Multiobjective Optimization Test Instances for the CEC 2009 Special Session and Competition
    • Technical Report CES-887
    • Q. Zhang, A. Zhou, S. Zhao, P. Suganthan, W. Liu, S. Tiwari, Multiobjective Optimization Test Instances for the CEC 2009 Special Session and Competition, Technical Report CES-887, 2008.
    • (2008)
    • Zhang, Q.1    Zhou, A.2    Zhao, S.3    Suganthan, P.4    Liu, W.5    Tiwari, S.6
  • 35
    • 79960535211 scopus 로고    scopus 로고
    • A practical tutorial on the use of nonparametric statistical tests as a methodology for comparing evolutionary and swarm intelligence algorithms
    • Derrac J., Garca S., Molina D., Herrera F. A practical tutorial on the use of nonparametric statistical tests as a methodology for comparing evolutionary and swarm intelligence algorithms. Swarm Evol. Comput. 2011, 1(1):3-18.
    • (2011) Swarm Evol. Comput. , vol.1 , Issue.1 , pp. 3-18
    • Derrac, J.1    Garca, S.2    Molina, D.3    Herrera, F.4
  • 36
    • 84875210170 scopus 로고    scopus 로고
    • S-shaped versus v-shaped transfer functions for binary particle swarm optimization
    • Mirjalili S., Lewis A. S-shaped versus v-shaped transfer functions for binary particle swarm optimization. Swarm Evol. Comput. 2013, 685-692.
    • (2013) Swarm Evol. Comput. , pp. 685-692
    • Mirjalili, S.1    Lewis, A.2
  • 37
    • 84931462011 scopus 로고    scopus 로고
    • Constrained test problems for multi-objective evolutionary optimization, in: Proceedings of the First International Conference on Evolutionary Multi-Criterion Optimization
    • K. Deb, A. Pratap, T. Meyarivan, Constrained test problems for multi-objective evolutionary optimization, in: Proceedings of the First International Conference on Evolutionary Multi-Criterion Optimization, 2001, pp. 284-298.
    • (2001) , pp. 284-298
    • Deb, K.1    Pratap, A.2    Meyarivan, T.3
  • 38
    • 0031701082 scopus 로고    scopus 로고
    • Multiobjective optimization and multiple constraint handling with evolutionary part i. a unified formulation
    • Fonseca C., Fleming P. Multiobjective optimization and multiple constraint handling with evolutionary part i. a unified formulation. IEEE Trans. Syst. Man Cybern. Part A 1998, 28(1):26-37.
    • (1998) IEEE Trans. Syst. Man Cybern. Part A , vol.28 , Issue.1 , pp. 26-37
    • Fonseca, C.1    Fleming, P.2
  • 40
    • 78650199816 scopus 로고    scopus 로고
    • MOEA/D for constrained multiobjective optimization: some preliminary experimental results, in:
    • Jan M.A., Zhang Q.F. MOEA/D for constrained multiobjective optimization: some preliminary experimental results, in:. UKCI 2010.
    • (2010) UKCI
    • Jan, M.A.1    Zhang, Q.F.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.