|
Volumn 53, Issue , 2014, Pages 203-205
|
Informatics can identify systemic sclerosis (SSc) patients at risk for scleroderma renal crisis
|
Author keywords
Blood pressure; Hypertension; Informatics; Management; Natural language processing; Prednisone; Renal crisis; Scleroderma; Steroid; Systemic sclerosis
|
Indexed keywords
BLOOD PRESSURE;
DIAGNOSIS;
INFORMATION SCIENCE;
MANAGEMENT;
MEDICAL COMPUTING;
SUPPORT VECTOR MACHINES;
HYPERTENSION;
INFORMATICS;
NATURAL LANGUAGE PROCESSING;
PREDNISONE;
RENAL CRISIS;
SCLERODERMA;
STEROID;
SYSTEMIC SCLEROSIS;
NATURAL LANGUAGE PROCESSING SYSTEMS;
BLOOD PRESSURE;
PREDNISONE;
ANTIINFLAMMATORY AGENT;
ADRENAL CORTEX INSUFFICIENCY;
ARTICLE;
ELECTRONIC MEDICAL RECORD;
HUMAN;
HYPERTENSION;
INFORMATION SCIENCE;
LOCALIZED SCLERODERMA;
MAJOR CLINICAL STUDY;
NATURAL LANGUAGE PROCESSING;
PRESCRIPTION;
PRIORITY JOURNAL;
SCLERODERMA RENAL CRISIS;
SUPPORT VECTOR MACHINE;
SYSTEMIC SCLEROSIS;
COMPLICATION;
DATA MINING;
MEDICAL INFORMATICS;
PATHOPHYSIOLOGY;
RENAL INSUFFICIENCY;
RISK FACTOR;
SCLERODERMA, SYSTEMIC;
ADULT;
ICD-9;
KIDNEY DISEASE;
PATIENT IDENTIFICATION;
PREDICTIVE VALUE;
ANTI-INFLAMMATORY AGENTS;
DATA MINING;
ELECTRONIC HEALTH RECORDS;
HUMANS;
HYPERTENSION;
MEDICAL INFORMATICS APPLICATIONS;
NATURAL LANGUAGE PROCESSING;
PREDNISONE;
RENAL INSUFFICIENCY;
RISK FACTORS;
SCLERODERMA, SYSTEMIC;
|
EID: 84906719270
PISSN: 00104825
EISSN: 18790534
Source Type: Journal
DOI: 10.1016/j.compbiomed.2014.07.022 Document Type: Article |
Times cited : (9)
|
References (11)
|