메뉴 건너뛰기




Volumn 50, Issue 8, 2014, Pages 6767-6787

Approximate Bayesian computation using markov chain Monte Carlo simulation: DREAM(ABC)

Author keywords

[No Author keywords available]

Indexed keywords

BAYESIAN NETWORKS; EVOLUTIONARY ALGORITHMS; FUNCTION EVALUATION; INTELLIGENT SYSTEMS; LARGE SCALE SYSTEMS; MARKOV PROCESSES; OPTIMIZATION;

EID: 84906295211     PISSN: 00431397     EISSN: 19447973     Source Type: Journal    
DOI: 10.1002/2014WR015386     Document Type: Article
Times cited : (96)

References (43)
  • 2
    • 78149388939 scopus 로고    scopus 로고
    • Approximate Bayesian Computation in evolution and ecology
    • Beaumont, M. A. (2010), Approximate Bayesian Computation in evolution and ecology, Annu. Rev. Ecol. Evol. Syst., 41, 379-406
    • (2010) Annu. Rev. Ecol. Evol. Syst. , vol.41 , pp. 379-406
    • Beaumont, M.A.1
  • 3
    • 0036964474 scopus 로고    scopus 로고
    • Approximate Bayesian computation in population genetics
    • Beaumont, M. A., W. Zhang, and D. J. Balding (2002), Approximate Bayesian computation in population genetics, Genetics, 162(4), 2025-2035
    • (2002) Genetics , vol.162 , Issue.4 , pp. 2025-2035
    • Beaumont, M.A.1    Zhang, W.2    Balding, D.J.3
  • 5
    • 77954247262 scopus 로고    scopus 로고
    • ABC as a flexible framework to estimate demography over space and time: Some cons, many pros
    • Bertorelle, G., A. Benazzo, and S. Mona (2010), ABC as a flexible framework to estimate demography over space and time: Some cons, many pros, Mol. Ecol., 19, 2609-2625
    • (2010) Mol. Ecol. , vol.19 , pp. 2609-2625
    • Bertorelle, G.1    Benazzo, A.2    Mona, S.3
  • 6
    • 73549122582 scopus 로고    scopus 로고
    • Non-linear regression models for approximate Bayesian computation
    • Blum, M. G. B., and O. François (2010), Non-linear regression models for approximate Bayesian computation, Stat. Comput., 20, 63-73
    • (2010) Stat. Comput. , vol.20 , pp. 63-73
    • Blum, M.G.B.1    François, O.2
  • 7
    • 0003408682 scopus 로고
    • A Generalized Streamflow Simulation System: Conceptual Modeling for Digital Computers
    • Sacramento, Calif
    • Burnash, R. J., R. L. Ferral, and R. A. McGuire (1973), A Generalized Streamflow Simulation System: Conceptual Modeling for Digital Computers, Joint Fed.-State River Forecast Cent., Sacramento, Calif.
    • (1973) Joint Fed.-State River Forecast Cent.
    • Burnash, R.J.1    Ferral, R.L.2    McGuire, R.A.3
  • 8
    • 77958485884 scopus 로고    scopus 로고
    • Ancient numerical daemons of conceptual hydrological modeling: 1. Fidelity and efficiency of time stepping schemes
    • Clark, M. P., and D. Kavetski (2010), Ancient numerical daemons of conceptual hydrological modeling: 1. Fidelity and efficiency of time stepping schemes, Water Resour. Res., 46, W10510, doi:10.1029/2009WR008894.
    • (2010) Water Resour. Res. , vol.46
    • Clark, M.P.1    Kavetski, D.2
  • 10
    • 84857190557 scopus 로고    scopus 로고
    • An adaptive sequential Monte Carlo method for approximate Bayesian computation
    • Del Moral, P., A. Doucet, and A. Jasra (2011), An adaptive sequential Monte Carlo method for approximate Bayesian computation, Stat. Comput., 22, 1009-1020
    • (2011) Stat. Comput. , vol.22 , pp. 1009-1020
    • Del Moral, P.1    Doucet, A.2    Jasra, A.3
  • 11
    • 0001197731 scopus 로고
    • Monte Carlo methods of inference for implicit statistical models
    • Diggle, P. J., and R. J. Gratton (1984), Monte Carlo methods of inference for implicit statistical models, J. R. Stat. Soc., Ser. B, 46, 193-227
    • (1984) J. R. Stat. Soc., Ser. B , vol.46 , pp. 193-227
    • Diggle, P.J.1    Gratton, R.J.2
  • 12
    • 0026445234 scopus 로고
    • Effective and efficient global optimization for conceptual rainfall-runoff models
    • Duan, Q., S. Sorooshian, and V. Gupta (1992), Effective and efficient global optimization for conceptual rainfall-runoff models, Water Resour. Res., 28(4), 1015-1031
    • (1992) Water Resour. Res. , vol.28 , Issue.4 , pp. 1015-1031
    • Duan, Q.1    Sorooshian, S.2    Gupta, V.3
  • 13
    • 84879875913 scopus 로고    scopus 로고
    • Pitfalls and improvements in the joint inference of heteroscedasticity and autocorrelation in hydrological model calibration
    • Evin, G., D. Kavetski, M. Thyer, and G. Kuczera (2013), Pitfalls and improvements in the joint inference of heteroscedasticity and autocorrelation in hydrological model calibration, Water Resour. Res., 49, 4518-4524, doi:10.1002/wrcr.20284
    • (2013) Water Resour. Res. , vol.49 , pp. 4518-4524
    • Evin, G.1    Kavetski, D.2    Thyer, M.3    Kuczera, G.4
  • 14
    • 84972492387 scopus 로고
    • Inference from iterative simulation using multiple sequences
    • Gelman, A., and D. B. Rubin (1992), Inference from iterative simulation using multiple sequences, Stat. Sci., 7, 457-472
    • (1992) Stat. Sci. , vol.7 , pp. 457-472
    • Gelman, A.1    Rubin, D.B.2
  • 15
    • 75249099118 scopus 로고    scopus 로고
    • ABC likelihood-free methods for model choice in Gibbs random fields
    • Grelaud, A., C. Robert, J. Marin, F. Rodolphe, and J. Taly (2009), ABC likelihood-free methods for model choice in Gibbs random fields, Bayesian Anal., 4(2), 317-336
    • (2009) Bayesian Anal. , vol.4 , Issue.2 , pp. 317-336
    • Grelaud, A.1    Robert, C.2    Marin, J.3    Rodolphe, F.4    Taly, J.5
  • 16
    • 49449115848 scopus 로고    scopus 로고
    • Reconciling theory with observations: Elements of a diagnostic approach to model evaluation
    • Gupta, H. V., T. Wagener, and Y. Liu (2008), Reconciling theory with observations: Elements of a diagnostic approach to model evaluation, Hydrol. Processes, 22(18), 3802-3813
    • (2008) Hydrol. Processes , vol.22 , Issue.18 , pp. 3802-3813
    • Gupta, H.V.1    Wagener, T.2    Liu, Y.3
  • 17
    • 0033436531 scopus 로고    scopus 로고
    • Adaptive proposal distribution for random walk Metropolis algorithm
    • Haario, H., E. Saksman, and J. Tamminen (1999), Adaptive proposal distribution for random walk Metropolis algorithm, Comput. Stat., 14(3), 375-395
    • (1999) Comput. Stat. , vol.14 , Issue.3 , pp. 375-395
    • Haario, H.1    Saksman, E.2    Tamminen, J.3
  • 18
    • 0038563932 scopus 로고    scopus 로고
    • An adaptive Metropolis algorithm
    • Haario, H., E. Saksman, and J. Tamminen (2001), An adaptive Metropolis algorithm, Bernoulli, 7, 223-242
    • (2001) Bernoulli , vol.7 , pp. 223-242
    • Haario, H.1    Saksman, E.2    Tamminen, J.3
  • 19
    • 77956890234 scopus 로고
    • Monte Carlo sampling methods using Markov chains and their applications
    • Hastings, H. (1970), Monte Carlo sampling methods using Markov chains and their applications, Biometrika, 57, 97-109
    • (1970) Biometrika , vol.57 , pp. 97-109
    • Hastings, H.1
  • 20
    • 0031294907 scopus 로고    scopus 로고
    • Monte Carlo filter using the genetic algorithm operators
    • Higuchi, T. (1997), Monte Carlo filter using the genetic algorithm operators, J. Stat. Comput. Simul., 59, 1-23
    • (1997) J. Stat. Comput. Simul. , vol.59 , pp. 1-23
    • Higuchi, T.1
  • 21
    • 51449104123 scopus 로고    scopus 로고
    • Approximately sufficient statistics and Bayesian computation
    • Joyce, P., and P. Marjoram (2008), Approximately sufficient statistics and Bayesian computation, Stat. Appl. Genetics Mol. Biol., 7(1).
    • (2008) Stat. Appl. Genetics Mol. Biol. , vol.7 , Issue.1
    • Joyce, P.1    Marjoram, P.2
  • 22
    • 77958463981 scopus 로고    scopus 로고
    • Ancient numerical daemons of conceptual hydrological modeling: 2. Impact of time stepping schemes on model analysis and prediction
    • Kavetski, D., and M. P. Clark (2010), Ancient numerical daemons of conceptual hydrological modeling: 2. Impact of time stepping schemes on model analysis and prediction, Water Resour. Res., 46, W10511, doi:10.1029/2009WR008896
    • (2010) Water Resour. Res. , vol.46
    • Kavetski, D.1    Clark, M.P.2
  • 23
    • 84856263454 scopus 로고    scopus 로고
    • High-dimensional posterior exploration of hydrologic models using multiple-try DREAMðZSÞ and highperformance computing
    • Laloy, E., and J. A. Vrugt (2012), High-dimensional posterior exploration of hydrologic models using multiple-try DREAMðZSÞ and highperformance computing, Water Resour. Res., 48, W01526, doi:10.1029/2011WR010608
    • (2012) Water Resour. Res. , vol.48
    • Laloy, E.1    Vrugt, J.A.2
  • 26
    • 84871579209 scopus 로고    scopus 로고
    • Generalized likelihood uncertainty estimation (GLUE) and approximate Bayesian computation: What’s the connection?
    • Nott, D. J., L. Marshall, and J. Brown (2012), Generalized likelihood uncertainty estimation (GLUE) and approximate Bayesian computation: What’s the connection?, Water Resour. Res., 48, doi:10.1029/2011WR011128
    • (2012) Water Resour. Res. , vol.48
    • Nott, D.J.1    Marshall, L.2    Brown, J.3
  • 28
    • 0032735986 scopus 로고    scopus 로고
    • Population growth of human Y chromosomes: A study of Y chromosome microsatellites
    • Pritchard, J. K., M. T. Seielstad, A. Perez-Lezaun, and M. T. Feldman (1999), Population growth of human Y chromosomes: A study of Y chromosome microsatellites, Mol. Biol. Evol., 16(12), 1791-1798
    • (1999) Mol. Biol. Evol. , vol.16 , Issue.12 , pp. 1791-1798
    • Pritchard, J.K.1    Seielstad, M.T.2    Perez-Lezaun, A.3    Feldman, M.T.4
  • 29
    • 67649819681 scopus 로고    scopus 로고
    • Model criticism based on likelihood-free inference, with an application to protein network evolution
    • Ratmann, O., C. Andrieu, C. Wiuf, and S. Richardson (2009), Model criticism based on likelihood-free inference, with an application to protein network evolution, Proc. Natl. Acad. Sci. U. S. A., 106, 1-6
    • (2009) Proc. Natl. Acad. Sci. U. S. A. , vol.106 , pp. 1-6
    • Ratmann, O.1    Andrieu, C.2    Wiuf, C.3    Richardson, S.4
  • 30
    • 84890094491 scopus 로고    scopus 로고
    • Bridging the gap between GLUE and formal statistical approaches: Approximate Bayesian computation, Hydrol.
    • Sadegh, M., and J. A. Vrugt (2013), Bridging the gap between GLUE and formal statistical approaches: Approximate Bayesian computation, Hydrol. Earth Syst. Sci., 17, 4831-4850, doi:10.5194/hess-17-4831-2013
    • (2013) Earth Syst. Sci. , vol.17 , pp. 4831-4850
    • Sadegh, M.1    Vrugt, J.A.2
  • 31
    • 77954727893 scopus 로고    scopus 로고
    • A formal likelihood function for parameter and predictive inference of hydrologic models with correlated, heteroscedastic and non-Gaussian errors
    • Schoups, G., and J. A. Vrugt (2010), A formal likelihood function for parameter and predictive inference of hydrologic models with correlated, heteroscedastic and non-Gaussian errors, Water Resour. Res., 46, W10531, doi:10.1029/2009WR008933
    • (2010) Water Resour. Res. , vol.46
    • Schoups, G.1    Vrugt, J.A.2
  • 33
    • 78650986160 scopus 로고    scopus 로고
    • Development of a formal likelihood function for improved Bayesian inference of ephemeral catchments
    • Smith, T., A. Sharma, L. Marshall, R. Mehrotra, and S. Sisson (2010), Development of a formal likelihood function for improved Bayesian inference of ephemeral catchments, Water Resour. Res., 46, W12551, doi:10.1029/2010WR009514
    • (2010) Water Resour. Res. , vol.46
    • Smith, T.1    Sharma, A.2    Marshall, L.3    Mehrotra, R.4    Sisson, S.5
  • 35
    • 0142000477 scopus 로고    scopus 로고
    • Differential evolution—A simple and efficient heuristic for global optimization over continuous spaces
    • Storn, R., and K. Price (1997), Differential evolution—A simple and efficient heuristic for global optimization over continuous spaces, J. Global Optim., 11, 341-359
    • (1997) J. Global Optim. , vol.11 , pp. 341-359
    • Storn, R.1    Price, K.2
  • 36
    • 58149142997 scopus 로고    scopus 로고
    • Approximate Bayesian computation scheme for parameter inference and model selection in dynamical systems
    • Toni, T., D. Welch, N. Strelkowa, A. Ipsen, and M. P. Stumpf (2009), Approximate Bayesian computation scheme for parameter inference and model selection in dynamical systems, J. R. Soc. Interface, 6, 187-202
    • (2009) J. R. Soc. Interface , vol.6 , pp. 187-202
    • Toni, T.1    Welch, D.2    Strelkowa, N.3    Ipsen, A.4    Stumpf, M.P.5
  • 37
    • 84866883276 scopus 로고    scopus 로고
    • Approximate Bayesian computation with differential evolution
    • Turner, B. M., and P. B. Sederberg (2012), Approximate Bayesian computation with differential evolution, J. Math. Psychol., 56(5), 375-385, doi:10.1016/j.jmp.2012.06.004
    • (2012) J. Math. Psychol. , vol.56 , Issue.5 , pp. 375-385
    • Turner, B.M.1    Sederberg, P.B.2
  • 38
    • 84858767588 scopus 로고    scopus 로고
    • A tutorial on approximate Bayesian computation
    • Turner, B. M., and T. van Zandt (2012), A tutorial on approximate Bayesian computation, J. Math. Psychol., 56, 69-85
    • (2012) J. Math. Psychol. , vol.56 , pp. 69-85
    • Turner, B.M.1    Van Zandt, T.2
  • 39
    • 84880656706 scopus 로고    scopus 로고
    • Toward diagnostic model calibration and evaluation: Approximate Bayesian computation
    • Vrugt, J. A., and M. Sadegh (2013), Toward diagnostic model calibration and evaluation: Approximate Bayesian computation, Water Resour. Res., 49, 4335-4345, doi:10.1002/wrcr.20354
    • (2013) Water Resour. Res. , vol.49 , pp. 4335-4345
    • Vrugt, J.A.1    Sadegh, M.2
  • 40
    • 83755225865 scopus 로고    scopus 로고
    • (D): An adaptive Markov Chain Monte Carlo simulation algorithm to solve discrete, noncontinuous, and combinatorial posterior parameter estimation problems, Hydrol.
    • (D): An adaptive Markov Chain Monte Carlo simulation algorithm to solve discrete, noncontinuous, and combinatorial posterior parameter estimation problems, Hydrol. Earth Syst. Sci., 15, 3701-3713, doi:10.5194/hess-15-3701-2011
    • (2011) Earth Syst. Sci. , vol.15 , pp. 3701-3713
    • Vrugt, J.A.1    Ter Braak, C.J.F.2
  • 41
    • 57049099445 scopus 로고    scopus 로고
    • Treatment of input uncertainty in hydrologic modeling: Doing hydrology backward with Markov chain Monte Carlo simulation
    • Vrugt, J. A., C. J. F. ter Braak, M. P. Clark, J. M. Hyman, and B. A. Robinson (2008), Treatment of input uncertainty in hydrologic modeling: Doing hydrology backward with Markov chain Monte Carlo simulation, Water Resour. Res., 44, W00B09, doi:10.1029/2007WR006720
    • (2008) Water Resour. Res. , vol.44
    • Vrugt, J.A.1    Ter Braak, C.J.F.2    Clark, M.P.3    Hyman, J.M.4    Robinson, B.A.5
  • 42
    • 65349141143 scopus 로고    scopus 로고
    • Accelerating Markov chain Monte Carlo simulation by differential evolution with self-adaptive randomized subspace sampling
    • Vrugt, J. A., C. J. F. ter Braak, C. G. H. Diks, D. Higdon, B. A. Robinson, and J. M. Hyman (2009), Accelerating Markov chain Monte Carlo simulation by differential evolution with self-adaptive randomized subspace sampling, Int. J. Nonlinear Sci. Numer. Simul., 10(3), 273-290
    • (2009) Int. J. Nonlinear Sci. Numer. Simul. , vol.10 , Issue.3 , pp. 273-290
    • Vrugt, J.A.1    Ter Braak, C.J.F.2    Diks, C.G.H.3    Higdon, D.4    Robinson, B.A.5    Hyman, J.M.6
  • 43
    • 70350136774 scopus 로고    scopus 로고
    • Efficient approximate Bayesian computation coupled with Markov chain Monte Carlo without likelihood
    • Wegmann, D., C. Leuenberger, and L. Excoffier (2009), Efficient approximate Bayesian computation coupled with Markov chain Monte Carlo without likelihood, Genetics, 182(4), 1207-1218.
    • (2009) Genetics , vol.182 , Issue.4 , pp. 1207-1218
    • Wegmann, D.1    Leuenberger, C.2    Excoffier, L.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.