-
1
-
-
0001862769
-
An inequality and associated maximization technique in statistical estimation for probabilistic functions of markov processes
-
Baum, L. E. (1972). An inequality and associated maximization technique in statistical estimation for probabilistic functions of markov processes. Inequalities, 3, 1-8.
-
(1972)
Inequalities
, vol.3
, pp. 1-8
-
-
Baum, L.E.1
-
2
-
-
0028392483
-
Learning long-term dependencies with gradient descent is difficult
-
Bengio, Y., Simard, P., & Frasconi, P. (1994). Learning long-term dependencies with gradient descent is difficult. IEEE Transactions on Neural Networks, 5, 157-166.
-
(1994)
IEEE Transactions on Neural Networks
, vol.5
, pp. 157-166
-
-
Bengio, Y.1
Simard, P.2
Frasconi, P.3
-
3
-
-
81355133300
-
Neural dynamics as sampling: A model for stochastic computation in recurrent networks of spiking neurons
-
10.1371/journal.pcbi.1002211.
-
Buesing, L., Bill, J., Nessler, B., & Maass, W. (2011). Neural dynamics as sampling: A model for stochastic computation in recurrent networks of spiking neurons. PLoS Computational Biology, 7. 10.1371/journal.pcbi.1002211.
-
(2011)
PLoS Computational Biology
, vol.7
-
-
Buesing, L.1
Bill, J.2
Nessler, B.3
Maass, W.4
-
4
-
-
0020966176
-
The function of dream sleep
-
Crick, F., & Mitchison, G. (1986). The function of dream sleep. Nature, 304, 111-114.
-
(1986)
Nature
, vol.304
, pp. 111-114
-
-
Crick, F.1
Mitchison, G.2
-
5
-
-
85162069624
-
Phone recognition with the mean-covariance restricted Boltzmann machine
-
Dahl, G. E., Ranzato, M., Mohamed, A., & Hinton, G. E. (2010). Phone recognition with the mean-covariance restricted Boltzmann machine. In Advances in neural information processing systems, Vol. 24 (pp. 469-477).
-
(2010)
Advances in neural information processing systems
, vol.24
, pp. 469-477
-
-
Dahl, G.E.1
Ranzato, M.2
Mohamed, A.3
Hinton, G.E.4
-
6
-
-
0000362092
-
Nonlinear dimensionality reduction
-
In C. Hanson & C. Giles (Eds.), San Mateo, CA: Morgan Kaufmann.
-
DeMers, D., & Cottrell, G. W. (1993). Nonlinear dimensionality reduction. In C. Hanson & C. Giles (Eds.), Advances in neural information processing systems, Vol. 5 (pp. 580-587). San Mateo, CA: Morgan Kaufmann.
-
(1993)
Advances in neural information processing systems
, vol.5
, pp. 580-587
-
-
DeMers, D.1
Cottrell, G.W.2
-
7
-
-
85015457888
-
Maximum likelihood from incomplete data via the em algorithm
-
Dempster, A. P., Laird, N. M., & Rubin, D. B. (1977). Maximum likelihood from incomplete data via the em algorithm. Journal of the Royal Statistical Society B, 39, 1-38.
-
(1977)
Journal of the Royal Statistical Society B
, vol.39
, pp. 1-38
-
-
Dempster, A.P.1
Laird, N.M.2
Rubin, D.B.3
-
8
-
-
26444565569
-
Finding structure in time
-
Elman, J. L. (1990). Finding structure in time. Cognitive Science, 14(2), 179-211.
-
(1990)
Cognitive Science
, vol.14
, Issue.2
, pp. 179-211
-
-
Elman, J.L.1
-
9
-
-
77949522811
-
Why does unsupervised pre-training help deep learning?
-
Erhan, D., Bengio, Y., Courville, A., Manzagol, P., Vincent, P., & Bengio, S. (2010). Why does unsupervised pre-training help deep learning? Journal of Machine Learning Research, 11, 625-660.
-
(2010)
Journal of Machine Learning Research
, vol.11
, pp. 625-660
-
-
Erhan, D.1
Bengio, Y.2
Courville, A.3
Manzagol, P.4
Vincent, P.5
Bengio, S.6
-
10
-
-
37849187806
-
A free energy principle for the brain
-
Friston, K., Kilner, J., & Harrison, L. (2006). A free energy principle for the brain. Journal of Physiology, 100, 70-87.
-
(2006)
Journal of Physiology
, vol.100
, pp. 70-87
-
-
Friston, K.1
Kilner, J.2
Harrison, L.3
-
11
-
-
0000783715
-
Replicator neural networks for universal optimal source coding
-
Hecht-Nielsen, R. (1995). Replicator neural networks for universal optimal source coding. Science, 269, 1860-1863.
-
(1995)
Science
, vol.269
, pp. 1860-1863
-
-
Hecht-Nielsen, R.1
-
12
-
-
0022823858
-
Probabilistic interpretations for mycin's certainty factors
-
In L. Kanal & J. Lemmer (Eds.), New York: North-Holland.
-
Heckerman, D. (1986). Probabilistic interpretations for mycin's certainty factors. In L. Kanal & J. Lemmer (Eds.), Uncertainty in artificial intelligence (pp. 167-196). New York: North-Holland.
-
(1986)
Uncertainty in artificial intelligence
, pp. 167-196
-
-
Heckerman, D.1
-
13
-
-
0024732792
-
Connectionist learning procedures
-
Hinton, G. E. (1989). Connectionist learning procedures. Artificial Intelligence, 40, 185-234.
-
(1989)
Artificial Intelligence
, vol.40
, pp. 185-234
-
-
Hinton, G.E.1
-
14
-
-
0013344078
-
Training products of experts by minimizing contrastive divergence
-
Hinton, G. E. (2002). Training products of experts by minimizing contrastive divergence. Neural Computation, 14(8), 1711-1800.
-
(2002)
Neural Computation
, vol.14
, Issue.8
, pp. 1711-1800
-
-
Hinton, G.E.1
-
16
-
-
0029652445
-
The wake-sleep algorithm for self-organizing neural networks
-
Hinton, G. E., Dayan, P., Frey, B. J., & Neal, R. (1995). The wake-sleep algorithm for self-organizing neural networks. Science, 268, 1158-1161.
-
(1995)
Science
, vol.268
, pp. 1158-1161
-
-
Hinton, G.E.1
Dayan, P.2
Frey, B.J.3
Neal, R.4
-
17
-
-
79959347463
-
Transforming auto-encoders
-
In T. Hontela, W. Duch, M. Girolami, & S. Kashki (Eds.), Helsinki: Springer.
-
Hinton, G. E., Krizhevsky, A., & Wang, S. (2011). Transforming auto-encoders. In T. Hontela, W. Duch, M. Girolami, & S. Kashki (Eds.), ICANN-11: International conference on artificial neural networks (pp. 44-51). Helsinki: Springer.
-
(2011)
ICANN-11: International conference on artificial neural networks
, pp. 44-51
-
-
Hinton, G.E.1
Krizhevsky, A.2
Wang, S.3
-
18
-
-
33745805403
-
A fast learning algorithm for deep belief nets
-
Hinton, G. E., Osindero, S., & Teh, Y. W. (2006). A fast learning algorithm for deep belief nets. Neural Computation, 18(7), 1527-1554.
-
(2006)
Neural Computation
, vol.18
, Issue.7
, pp. 1527-1554
-
-
Hinton, G.E.1
Osindero, S.2
Teh, Y.W.3
-
19
-
-
33746600649
-
Reducing the dimensionality of data with neural networks
-
Hinton, G. E., & Salakhutdinov, R. R. (2006). Reducing the dimensionality of data with neural networks. Science, 313, 504-507.
-
(2006)
Science
, vol.313
, pp. 504-507
-
-
Hinton, G.E.1
Salakhutdinov, R.R.2
-
20
-
-
0000999440
-
Learning and relearning in Boltzmann machines
-
In D. E. Rumelhart & J. L. McClelland (Eds.), Cambridge, MA: MIT Press.
-
Hinton, G. E., & Sejnowski, T. J. (1986). Learning and relearning in Boltzmann machines. In D. E. Rumelhart & J. L. McClelland (Eds.), Parallel distributed processing: Volume 1: Foundations (pp. 282-317). Cambridge, MA: MIT Press.
-
(1986)
Parallel distributed processing: Volume 1: Foundations
, pp. 282-317
-
-
Hinton, G.E.1
Sejnowski, T.J.2
-
21
-
-
0002834189
-
Autoencoders, minimum description length, and Helmholtz free energy
-
Hinton, G. E., & Zemel, R. S. (1994). Autoencoders, minimum description length, and Helmholtz free energy. Advances in Neural Information Processing Systems, 6, 3-10.
-
(1994)
Advances in Neural Information Processing Systems
, vol.6
, pp. 3-10
-
-
Hinton, G.E.1
Zemel, R.S.2
-
23
-
-
0017478996
-
Understanding image intensities
-
Horn, B. K. P. (1977). Understanding image intensities. Artificial Intelligence, 8, 201-231.
-
(1977)
Artificial Intelligence
, vol.8
, pp. 201-231
-
-
Horn, B.K.P.1
-
24
-
-
0000935895
-
An introduction to variational methods for graphical models
-
In M. I. Jordan (Ed.), Cambridge, MA: MIT Press.
-
Jordan, M. I., Ghahramani, Z., Jaakkola, T. S., & Saul, L. K. (1999). An introduction to variational methods for graphical models. In M. I. Jordan (Ed.), Learning in graphical models (pp. 105-161). Cambridge, MA: MIT Press.
-
(1999)
Learning in graphical models
, pp. 105-161
-
-
Jordan, M.I.1
Ghahramani, Z.2
Jaakkola, T.S.3
Saul, L.K.4
-
25
-
-
0001006209
-
Local computations with probabilities on graphical structures and their application to expert systems
-
Lauritzen, S. L., & Spiegelhalter, D. J. (1988). Local computations with probabilities on graphical structures and their application to expert systems. Journal of the Royal Statistical Society B, 50, 157-224.
-
(1988)
Journal of the Royal Statistical Society B
, vol.50
, pp. 157-224
-
-
Lauritzen, S.L.1
Spiegelhalter, D.J.2
-
26
-
-
0000134812
-
Une procédure d'apprentissage pour réseau a seuil asymmetrique (a learning scheme for asymmetric threshold networks)
-
In F. Fogelman (Ed.), Paris, France.
-
LeCun, Y. (1985). Une procédure d'apprentissage pour réseau a seuil asymmetrique (a learning scheme for asymmetric threshold networks). In F. Fogelman (Ed.), Proceedings of cognitiva, (pp. 599-604). Paris, France.
-
(1985)
Proceedings of cognitiva
, pp. 599-604
-
-
LeCun, Y.1
-
27
-
-
0032203257
-
Gradient-based learning applied to document recognition
-
LeCun, Y., Bottou, L., Bengio, Y., & Haffner, P. (1998). Gradient-based learning applied to document recognition. Proceedings of the IEEE, 86(11), 2278-2324.
-
(1998)
Proceedings of the IEEE
, vol.86
, Issue.11
, pp. 2278-2324
-
-
LeCun, Y.1
Bottou, L.2
Bengio, Y.3
Haffner, P.4
-
28
-
-
71149119164
-
Convolutional deep belief networks for scalable unsupervised learning of hierarchical representations
-
In L. Bottou & M. Littman (Eds.), Montreal: ACM.
-
Lee, H., Grosse, R., Ranganath, R., & Ng, A. (2009). Convolutional deep belief networks for scalable unsupervised learning of hierarchical representations. In L. Bottou & M. Littman (Eds.), Proceedings of the 26th international conference on machine learning (pp. 609-616). Montreal: ACM.
-
(2009)
Proceedings of the 26th international conference on machine learning
, pp. 609-616
-
-
Lee, H.1
Grosse, R.2
Ranganath, R.3
Ng, A.4
-
30
-
-
0031012615
-
Regulation of synaptic efficacy by coincidence of postsynaptic APs and EPSPs
-
Markram, H., Joachim, L., Frotscher, M., & Sakmann, B. (1997). Regulation of synaptic efficacy by coincidence of postsynaptic APs and EPSPs. Science, 275, 213-215.
-
(1997)
Science
, vol.275
, pp. 213-215
-
-
Markram, H.1
Joachim, L.2
Frotscher, M.3
Sakmann, B.4
-
31
-
-
77956541496
-
Deep learning via Hessian-free optimization
-
In J. Furnkranz & T. Joachims (Eds.), Haifa, Israel: Omnipress.
-
Martens, J. (2010). Deep learning via Hessian-free optimization. In J. Furnkranz & T. Joachims (Eds.), Proceedings of the 27th international conference on machine learning (ICML) (pp. 735-742). Haifa, Israel: Omnipress.
-
(2010)
Proceedings of the 27th international conference on machine learning (ICML)
, pp. 735-742
-
-
Martens, J.1
-
32
-
-
58149409989
-
An interactive activation model of context effects in letter perception: Part 1. An account of basic findings
-
McClelland, J. L., & Rumelhart, D. E. (1981). An interactive activation model of context effects in letter perception: Part 1. An account of basic findings. Psychological Review, 88, 375-407.
-
(1981)
Psychological Review
, vol.88
, pp. 375-407
-
-
McClelland, J.L.1
Rumelhart, D.E.2
-
33
-
-
77956509090
-
Rectified linear units improve restricted Boltzmann machines
-
In J. Furnkranz & T. Joachims (Eds.), Haifa, Israel: Omnipress.
-
Nair, V., & Hinton, G. E. (2010). Rectified linear units improve restricted Boltzmann machines. In J. Furnkranz & T. Joachims (Eds.), Proceedings of the 27th international conference on machine learning (pp. 807-814). Haifa, Israel: Omnipress.
-
(2010)
Proceedings of the 27th international conference on machine learning
, pp. 807-814
-
-
Nair, V.1
Hinton, G.E.2
-
34
-
-
44049116681
-
Connectionist learning of belief networks
-
Neal, R. M. (1992). Connectionist learning of belief networks. Artificial Intelligence, 56(1), 71-113.
-
(1992)
Artificial Intelligence
, vol.56
, Issue.1
, pp. 71-113
-
-
Neal, R.M.1
-
35
-
-
84906268425
-
-
Bayesian learning for neural networks. PhD thesis, Department of Computer Science, University of Toronto.
-
Neal, R. M. (1994). Bayesian learning for neural networks. PhD thesis, Department of Computer Science, University of Toronto.
-
(1994)
-
-
Neal, R.M.1
-
36
-
-
0002788893
-
A new view of the EM algorithm that justifies incremental, sparse and other variants
-
In M. I. Jordan (Ed.), Dordrecht, The Netherlands: Kluwer Academic Publishers.
-
Neal, R. M., & Hinton, G. E. (1998). A new view of the EM algorithm that justifies incremental, sparse and other variants. In M. I. Jordan (Ed.), Learning in graphical models (pp. 355-368). Dordrecht, The Netherlands: Kluwer Academic Publishers.
-
(1998)
Learning in graphical models
, pp. 355-368
-
-
Neal, R.M.1
Hinton, G.E.2
-
37
-
-
0027261536
-
Phase relationship between hippocampal place units and the EEG theta rhythm
-
O'Keefe, J., & Recce, M. L. (1993). Phase relationship between hippocampal place units and the EEG theta rhythm. Hippocampus, 3, 317-330.
-
(1993)
Hippocampus
, vol.3
, pp. 317-330
-
-
O'Keefe, J.1
Recce, M.L.2
-
39
-
-
70049094447
-
Sparse feature learning for deep belief networks
-
In B. Scholkopf, J. Platt, & T. Huffman (Eds.), San Mateo, CA: Morgan Kaufmann.
-
Ranzato, M., Boureau, Y., & LeCun, Y. (2007). Sparse feature learning for deep belief networks. In B. Scholkopf, J. Platt, & T. Huffman (Eds.), Advances in neural information processing systems, Vol. 20 (pp. 1185-1192). San Mateo, CA: Morgan Kaufmann.
-
(2007)
Advances in neural information processing systems
, vol.20
, pp. 1185-1192
-
-
Ranzato, M.1
Boureau, Y.2
LeCun, Y.3
-
41
-
-
85161966240
-
Hallucinations in Charles Bonnet syndrome induced by homeostasis: A deep Boltzmann machine model
-
In J. Lufferty & C. Williams (Eds.), San Mateo, CA: Morgan Kaufmann.
-
Reichert, D. P., Series, P., & Storkey, A. J. (2010). Hallucinations in Charles Bonnet syndrome induced by homeostasis: A deep Boltzmann machine model. In J. Lufferty & C. Williams (Eds.), Advances in neural information processing systems, Vol. 23 (pp. 2020-2028). San Mateo, CA: Morgan Kaufmann.
-
(2010)
Advances in neural information processing systems
, vol.23
, pp. 2020-2028
-
-
Reichert, D.P.1
Series, P.2
Storkey, A.J.3
-
42
-
-
80053460450
-
Contracting autoencoders: Explicit invariance during feature extraction
-
In L. Getoor & T. Scheffer (Eds.), New York: ACM.
-
Rifai, S., Vincent, P., Muller, X., Glorot, X., & Bengio, Y. (2011). Contracting autoencoders: Explicit invariance during feature extraction. In L. Getoor & T. Scheffer (Eds.), Proceedings of the 28th international conference on machine learning (pp. 833-840). New York: ACM.
-
(2011)
Proceedings of the 28th international conference on machine learning
, pp. 833-840
-
-
Rifai, S.1
Vincent, P.2
Muller, X.3
Glorot, X.4
Bengio, Y.5
-
43
-
-
0000999440
-
Distributed representations
-
In D. E. Rumelhart & J. L. McClelland (Eds.), Cambridge, MA: MIT Press.
-
Rumelhart, D. E., Hinton, G. E., & Williams, R. J. (1986a). Distributed representations. In D. E. Rumelhart & J. L. McClelland (Eds.), Parallel distributed processing: Volume 1: Foundations (pp. 77-109). Cambridge, MA: MIT Press.
-
(1986)
Parallel distributed processing: Volume 1: Foundations
, pp. 77-109
-
-
Rumelhart, D.E.1
Hinton, G.E.2
Williams, R.J.3
-
44
-
-
0022471098
-
Learning representations by back-propagating errors
-
Rumelhart, D. E., Hinton, G. E., & Williams, R. J. (1986b). Learning representations by back-propagating errors. Nature, 323, 533-536.
-
(1986)
Nature
, vol.323
, pp. 533-536
-
-
Rumelhart, D.E.1
Hinton, G.E.2
Williams, R.J.3
-
45
-
-
84874125782
-
An efficient learning procedure for deep Boltzmann machines
-
Salakhutdinov, R. R., & Hinton, G. E. (2012). An efficient learning procedure for deep Boltzmann machines. Neural Computation, 24, 1967-2006.
-
(2012)
Neural Computation
, vol.24
, pp. 1967-2006
-
-
Salakhutdinov, R.R.1
Hinton, G.E.2
-
46
-
-
0029679189
-
Mean field theory for sigmoid belief networks
-
Saul, L. K., Jaakkola, T., & Jordan, M. (1996). Mean field theory for sigmoid belief networks. Journal of Artificial Intelligence Research, 4, 61-76.
-
(1996)
Journal of Artificial Intelligence Research
, vol.4
, pp. 61-76
-
-
Saul, L.K.1
Jaakkola, T.2
Jordan, M.3
-
47
-
-
0000329993
-
Information processing in dynamical systems: Foundations of harmony theory
-
In D. E. Rumelhart & J. L. McClelland (Eds.), Cambridge, MA: MIT Press.
-
Smolensky, P. (1986). Information processing in dynamical systems: Foundations of harmony theory. In D. E. Rumelhart & J. L. McClelland (Eds.), Parallel distributed processing: Volume 1: Foundations (pp. 194-281). Cambridge, MA: MIT Press.
-
(1986)
Parallel distributed processing: Volume 1: Foundations
, pp. 194-281
-
-
Smolensky, P.1
-
48
-
-
79955836081
-
Two distributed-state models for generating high-dimensional time series
-
Taylor, G. W., Hinton, G. E., & Roweis, S. (2011). Two distributed-state models for generating high-dimensional time series. Journal of Machine Learning Research, 12, 1025-1068.
-
(2011)
Journal of Machine Learning Research
, vol.12
, pp. 1025-1068
-
-
Taylor, G.W.1
Hinton, G.E.2
Roweis, S.3
-
49
-
-
33746260413
-
Theory-based Bayesian models of inductive learning and reasoning
-
Tenenbaum, J. B., Griffiths, T. L., & Kemp, C. (2006). Theory-based Bayesian models of inductive learning and reasoning. Trends in Cognitive Sciences, 10, 309-318.
-
(2006)
Trends in Cognitive Sciences
, vol.10
, pp. 309-318
-
-
Tenenbaum, J.B.1
Griffiths, T.L.2
Kemp, C.3
-
50
-
-
56449086223
-
Training restricted Boltzmann machines using approximations to the likelihood gradient
-
In A. McCallum & S. Roweis (Eds.), New York: ACM.
-
Tieleman, T. (2008). Training restricted Boltzmann machines using approximations to the likelihood gradient. In A. McCallum & S. Roweis (Eds.), Proceedings of the 25th international conference on machine learning (pp. 1064-1071). New York: ACM.
-
(2008)
Proceedings of the 25th international conference on machine learning
, pp. 1064-1071
-
-
Tieleman, T.1
-
51
-
-
71149084943
-
Using fast weights to improve persistent contrastive divergence
-
In L. Bottou M. Littman (Eds.), New York: ACM.
-
Tieleman, T., & Hinton, G. E. (2009). Using fast weights to improve persistent contrastive divergence. In L. Bottou M. Littman (Eds.), Proceedings of the 26th international conference on machine learning (pp. 1033-1040). New York: ACM.
-
(2009)
Proceedings of the 26th international conference on machine learning
, pp. 1033-1040
-
-
Tieleman, T.1
Hinton, G.E.2
-
52
-
-
79551480483
-
Stacked denoising auto-encoders: Learning useful representations in a deep network with a local denoising criterion
-
Vincent, P., Larochelle, H., Lajoie, I., Bengio, Y., & Manzagol, P.-A. (2010). Stacked denoising auto-encoders: Learning useful representations in a deep network with a local denoising criterion. Journal of Machine Learning Research, 11, 3371-3408.
-
(2010)
Journal of Machine Learning Research
, vol.11
, pp. 3371-3408
-
-
Vincent, P.1
Larochelle, H.2
Lajoie, I.3
Bengio, Y.4
Manzagol, P.-A.5
-
53
-
-
0024634603
-
Phoneme recognition using time-delay neural networks
-
Waibel, A., Hanazawa, T., Hinton, G. E., Shikano, K., & Lang, K. J. (1989). Phoneme recognition using time-delay neural networks. IEEE Transactions on Acoustics, Speech, and Signal Processing, 31, 328-339.
-
(1989)
IEEE Transactions on Acoustics, Speech, and Signal Processing
, vol.31
, pp. 328-339
-
-
Waibel, A.1
Hanazawa, T.2
Hinton, G.E.3
Shikano, K.4
Lang, K.J.5
-
54
-
-
84899000641
-
Exponential family harmoniums with an application to information retrieval
-
In L. Saul, Y. Weiss, & L. Bottou (Eds.), Cambridge, MA: MIT Press.
-
Welling, M., Rosen-Zvi, M., & Hinton, G. E. (2005). Exponential family harmoniums with an application to information retrieval. In L. Saul, Y. Weiss, & L. Bottou (Eds.), Advances in neural information processing systems (pp. 1481-1488). Cambridge, MA: MIT Press.
-
(2005)
Advances in neural information processing systems
, pp. 1481-1488
-
-
Welling, M.1
Rosen-Zvi, M.2
Hinton, G.E.3
-
55
-
-
84906229104
-
-
Beyond regression: New tools for prediction and analysis in the behavioral sciences. PhD thesis, Harvard University.
-
Werbos, P. J. (1974). Beyond regression: New tools for prediction and analysis in the behavioral sciences. PhD thesis, Harvard University.
-
(1974)
-
-
Werbos, P.J.1
-
56
-
-
0033362601
-
Evolving artificial neural Networks
-
Yao, X. (1999). Evolving artificial neural Networks. Proceedings of the IEEE, 87, 1423-1447.
-
(1999)
Proceedings of the IEEE
, vol.87
, pp. 1423-1447
-
-
Yao, X.1
|