메뉴 건너뛰기




Volumn , Issue , 2014, Pages 525-532

Salient object detection using learning classifier systems that compute action mappings

Author keywords

Genetic algorithms; Learning classifier systems; Object detection; Pattern recognition; Saliency; XCS

Indexed keywords

CLUSTERING ALGORITHMS; COMPUTER CONTROL SYSTEMS; DATA MINING; GENETIC ALGORITHMS; IMAGE SEGMENTATION; MACHINE LEARNING; OBJECT RECOGNITION; OBJECT TRACKING; ONLINE SYSTEMS; PATTERN RECOGNITION; PATTERN RECOGNITION SYSTEMS; STATISTICAL TESTS;

EID: 84905674543     PISSN: None     EISSN: None     Source Type: Conference Proceeding    
DOI: 10.1145/2576768.2598371     Document Type: Conference Paper
Times cited : (15)

References (45)
  • 5
    • 0043284115 scopus 로고    scopus 로고
    • Accuracy-based learning classifier systems: Models, analysis and applications to classification tasks
    • E. Bernadó-Mansilla and J. M. Garrell-Guiu. Accuracy-Based Learning Classifier Systems: Models, Analysis and Applications to Classification Tasks. Evolutionary Computation, 11(3):209-238, 2003.
    • (2003) Evolutionary Computation , vol.11 , Issue.3 , pp. 209-238
    • Bernadó-Mansilla, E.1    Garrell-Guiu, J.M.2
  • 9
    • 56549108841 scopus 로고    scopus 로고
    • Function approximation with XCS: Hyperellipsoidal conditions, recursive least squares, and compaction
    • M. V. Butz, P. L. Lanzi, and S. W. Wilson. Function Approximation With XCS: Hyperellipsoidal Conditions, Recursive Least Squares, and Compaction. IEEE Transactions on Evolutionary Computation, 12(3):355-376, 2008.
    • (2008) IEEE Transactions on Evolutionary Computation , vol.12 , Issue.3 , pp. 355-376
    • Butz, M.V.1    Lanzi, P.L.2    Wilson, S.W.3
  • 10
    • 33750578932 scopus 로고    scopus 로고
    • Automated global structure extraction for effective local building block processing in XCS
    • M. V. Butz, M. Pelikan, X. Llorà, and D. E. Goldberg. Automated Global Structure Extraction for Effective Local Building Block Processing in XCS. Evolutionary Computation, 14(3):345-380, 2006.
    • (2006) Evolutionary Computation , vol.14 , Issue.3 , pp. 345-380
    • Butz, M.V.1    Pelikan, M.2    Llorà, X.3    Goldberg, D.E.4
  • 11
    • 26944470971 scopus 로고    scopus 로고
    • An algorithmic description of XCS
    • M. V. Butz and S. W. Wilson. An Algorithmic Description of XCS. Soft Computing, 6(3-4):144-153, 2002.
    • (2002) Soft Computing , vol.6 , Issue.3-4 , pp. 144-153
    • Butz, M.V.1    Wilson, S.W.2
  • 21
    • 84873749949 scopus 로고    scopus 로고
    • Evolving optimum populations with XCS classifier systems
    • M. Iqbal, W. N. Browne, and M. Zhang. Evolving Optimum Populations with XCS Classifier Systems. Soft Computing, 17(3):503-518, 2013.
    • (2013) Soft Computing , vol.17 , Issue.3 , pp. 503-518
    • Iqbal, M.1    Browne, W.N.2    Zhang, M.3
  • 22
    • 84883105299 scopus 로고    scopus 로고
    • Extending learning classifier system with cyclic graphs for scalability on complex, large-scale boolean problems
    • M. Iqbal, W. N. Browne, and M. Zhang. Extending Learning Classifier System with Cyclic Graphs for Scalability on Complex, Large-Scale Boolean Problems. In Proc of the Genetic and Evolutionary Computation Conference, pages 1045-1052, 2013.
    • (2013) Proc of the Genetic and Evolutionary Computation Conference , pp. 1045-1052
    • Iqbal, M.1    Browne, W.N.2    Zhang, M.3
  • 23
    • 84888108997 scopus 로고    scopus 로고
    • Learning complex, overlapping and niche imbalance boolean problems using XCS-based classifier systems
    • M. Iqbal, W. N. Browne, and M. Zhang. Learning Complex, Overlapping and Niche Imbalance Boolean Problems Using XCS-Based Classifier Systems. Evolutionary Intelligence, 6(2):73-91, 2013.
    • (2013) Evolutionary Intelligence , vol.6 , Issue.2 , pp. 73-91
    • Iqbal, M.1    Browne, W.N.2    Zhang, M.3
  • 24
    • 84905591330 scopus 로고    scopus 로고
    • Reusing building blocks of extracted knowledge to solve complex, large-scale boolean problems
    • M. Iqbal, W. N. Browne, and M. Zhang. Reusing Building Blocks of Extracted Knowledge to Solve Complex, Large-Scale Boolean Problems. IEEE Transactions on Evolutionary Computation, 2013. http://dx.doi.org/10.1109/TEVC. 2013.2281537.
    • (2013) IEEE Transactions on Evolutionary Computation
    • Iqbal, M.1    Browne, W.N.2    Zhang, M.3
  • 25
    • 4544260101 scopus 로고    scopus 로고
    • Automatic foveation for video compression using a neurobiological model of visual attention
    • L. Itti. Automatic Foveation for Video Compression Using a Neurobiological Model of Visual Attention. IEEE Transactions on Image Processing, 13(10):1304-1318, 2004.
    • (2004) IEEE Transactions on Image Processing , vol.13 , Issue.10 , pp. 1304-1318
    • Itti, L.1
  • 27
    • 84856633724 scopus 로고    scopus 로고
    • Center-surround divergence of feature statistics for salient object detection
    • D. A. Klein and S. Frintrop. Center-surround Divergence of Feature Statistics for Salient Object Detection. In Proc of International Conference on Computer Vision, pages 2214-2219, 2011.
    • (2011) Proc of International Conference on Computer Vision , pp. 2214-2219
    • Klein, D.A.1    Frintrop, S.2
  • 28
    • 79955835117 scopus 로고    scopus 로고
    • Transparent, online image pattern classification using a learning classifier system
    • volume 6624 of Lecture Notes in Computer Science, Springer Berlin Heidelberg
    • I. Kukenys, W. N. Browne, and M. Zhang. Transparent, Online Image Pattern Classification Using a Learning Classifier System. In Applications of Evolutionary Computation, volume 6624 of Lecture Notes in Computer Science, pages 183-193. Springer Berlin Heidelberg, 2011.
    • (2011) Applications of Evolutionary Computation , pp. 183-193
    • Kukenys, I.1    Browne, W.N.2    Zhang, M.3
  • 30
    • 34447559965 scopus 로고    scopus 로고
    • Generalization in the XCSF classifier system: Analysis, improvement, and extension
    • P. L. Lanzi, D. Loiacono, S. W. Wilson, and D. E. Goldberg. Generalization in the XCSF Classifier System: Analysis, Improvement, and Extension. Evolutionary Computation, 15(2):133-168, 2007.
    • (2007) Evolutionary Computation , vol.15 , Issue.2 , pp. 133-168
    • Lanzi, P.L.1    Loiacono, D.2    Wilson, S.W.3    Goldberg, D.E.4
  • 34
    • 84881602215 scopus 로고    scopus 로고
    • Optimizing visual attention models for predicting human fixations using genetic algorithms
    • S. S. Naqvi, W. N. Browne, and C. Hollitt. Optimizing Visual Attention Models for Predicting Human Fixations Using Genetic Algorithms. In Proc of IEEE Congress on Evolutionary Computation, pages 1302-1309, 2013.
    • (2013) Proc of IEEE Congress on Evolutionary Computation , pp. 1302-1309
    • Naqvi, S.S.1    Browne, W.N.2    Hollitt, C.3
  • 37
    • 60949108490 scopus 로고    scopus 로고
    • Intrusion detection with evolutionary learning classifier systems
    • K. Shafi, T. Kovacs, H. A. Abbass, and W. Zhu. Intrusion Detection with Evolutionary Learning Classifier Systems. Natural Computing, 8(1):3-27, 2009.
    • (2009) Natural Computing , vol.8 , Issue.1 , pp. 3-27
    • Shafi, K.1    Kovacs, T.2    Abbass, H.A.3    Zhu, W.4
  • 39
    • 33750684017 scopus 로고    scopus 로고
    • Modeling attention to salient proto-objects
    • D. Walther and C. Koch. Modeling Attention to Salient Proto-Objects. Neural Networks, 19(9):1395-1407, 2006.
    • (2006) Neural Networks , vol.19 , Issue.9 , pp. 1395-1407
    • Walther, D.1    Koch, C.2
  • 40
    • 0001387704 scopus 로고
    • Classifier fitness based on accuracy
    • S. W. Wilson. Classifier Fitness Based on Accuracy. Evolutionary Computation, 3(2):149-175, 1995.
    • (1995) Evolutionary Computation , vol.3 , Issue.2 , pp. 149-175
    • Wilson, S.W.1
  • 41
    • 0042643357 scopus 로고    scopus 로고
    • Get real! XCS with continuous-valued inputs
    • Springer
    • S. W. Wilson. Get Real! XCS with Continuous-Valued Inputs. In Learning Classifier Systems, pages 209-219. Springer, 2000.
    • (2000) Learning Classifier Systems , pp. 209-219
    • Wilson, S.W.1
  • 42
    • 27144549349 scopus 로고    scopus 로고
    • Classifiers that approximate functions
    • S. W. Wilson. Classifiers that Approximate Functions. Natural Computing, 1:211-233, 2002.
    • (2002) Natural Computing , vol.1 , pp. 211-233
    • Wilson, S.W.1
  • 43
    • 38049174723 scopus 로고    scopus 로고
    • Three architectures for continuous action
    • Springer
    • S. W. Wilson. Three Architectures for Continuous Action. In Learning Classifier Systems, pages 239-257. Springer, 2007.
    • (2007) Learning Classifier Systems , pp. 239-257
    • Wilson, S.W.1
  • 44
    • 79957836414 scopus 로고    scopus 로고
    • Learning a saliency map using fixated locations in natural scenes
    • Q. Zhao and C. Koch. Learning a Saliency Map Using Fixated Locations in Natural Scenes. Journal of Vision, 11(3):1-15, 2011.
    • (2011) Journal of Vision , vol.11 , Issue.3 , pp. 1-15
    • Zhao, Q.1    Koch, C.2
  • 45
    • 84865657272 scopus 로고    scopus 로고
    • Learning visual saliency by combining feature maps in a nonlinear manner using AdaBoost
    • Q. Zhao and C. Koch. Learning Visual Saliency by Combining Feature Maps in a Nonlinear Manner Using AdaBoost. Journal of Vision, 12(6):1-15, 2012.
    • (2012) Journal of Vision , vol.12 , Issue.6 , pp. 1-15
    • Zhao, Q.1    Koch, C.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.