-
1
-
-
0030211964
-
Bagging predictors
-
Breiman L. Bagging predictors. Mach. Learn. 1996, 24:123-140.
-
(1996)
Mach. Learn.
, vol.24
, pp. 123-140
-
-
Breiman, L.1
-
2
-
-
0035478854
-
Random forest
-
Breiman L. Random forest. Mach. Learn. 2001, 45:5-32.
-
(2001)
Mach. Learn.
, vol.45
, pp. 5-32
-
-
Breiman, L.1
-
3
-
-
84905577124
-
-
Evaluación genética (que no genómica) mediante boosting. XV Jornadas de produccion animal, Zaragoza, Spain, May 14-15, 2013.
-
Casellas, J., 2013. Evaluación genética (que no genómica) mediante boosting. XV Jornadas de produccion animal, Zaragoza, Spain, May 14-15, 2013.
-
(2013)
-
-
Casellas, J.1
-
4
-
-
84890309817
-
Genomic prediction in CIMMYT maize and wheat breeding programs
-
Crossa J., Perez P., Hickey J., Burgueno J., Ornella L., Ceron-Rojas J., Zhang X., Dreisigacker S., Babu R., Li Y., Bonnett D., Mathews K. Genomic prediction in CIMMYT maize and wheat breeding programs. Heredity 2014, 112:48-60.
-
(2014)
Heredity
, vol.112
, pp. 48-60
-
-
Crossa, J.1
Perez, P.2
Hickey, J.3
Burgueno, J.4
Ornella, L.5
Ceron-Rojas, J.6
Zhang, X.7
Dreisigacker, S.8
Babu, R.9
Li, Y.10
Bonnett, D.11
Mathews, K.12
-
5
-
-
69149088569
-
Reproducing kernel Hilbert spaces regression: a general framework for genetic evaluation
-
de los Campos G., Gianola D., Rosa G.J.M. Reproducing kernel Hilbert spaces regression: a general framework for genetic evaluation. J. Anim. Sci. 2009, 87:1883-1887.
-
(2009)
J. Anim. Sci.
, vol.87
, pp. 1883-1887
-
-
de los Campos, G.1
Gianola, D.2
Rosa, G.J.M.3
-
6
-
-
84876390765
-
Whole-Genome regression and prediction methods applied to plant and animal breeding
-
de los Campos G., Hickey J.M., Pong-Wong R., Daetwyler H.D., Calus M.P.L. Whole-Genome regression and prediction methods applied to plant and animal breeding. Genetics 2013, 193:327-345.
-
(2013)
Genetics
, vol.193
, pp. 327-345
-
-
de los Campos, G.1
Hickey, J.M.2
Pong-Wong, R.3
Daetwyler, H.D.4
Calus, M.P.L.5
-
7
-
-
78951477718
-
Semiparametric genomic-enabled prediction of genetic values using reproducing kernel Hilbert spaces methods
-
de los Campos G., Gianola D., Rosa G.J.M., Weigel K.A., Crossa J. Semiparametric genomic-enabled prediction of genetic values using reproducing kernel Hilbert spaces methods. Genet. Res. 2010, 92:295-308.
-
(2010)
Genet. Res.
, vol.92
, pp. 295-308
-
-
de los Campos, G.1
Gianola, D.2
Rosa, G.J.M.3
Weigel, K.A.4
Crossa, J.5
-
8
-
-
0035953487
-
Role and results of statistical methods in protein fold class prediction
-
Edler L., Grassmann J., Suhai S. Role and results of statistical methods in protein fold class prediction. Math. and Comput. Model. 2001, 33:1401-1417.
-
(2001)
Math. and Comput. Model.
, vol.33
, pp. 1401-1417
-
-
Edler, L.1
Grassmann, J.2
Suhai, S.3
-
10
-
-
0035470889
-
Greedy functions approximation: a gradient boosting machine
-
Friedman J.H. Greedy functions approximation: a gradient boosting machine. Ann Stat 2001, 29:1189-1232.
-
(2001)
Ann Stat
, vol.29
, pp. 1189-1232
-
-
Friedman, J.H.1
-
11
-
-
33746424900
-
Genomic- assisted prediction of genetic value with semiparametric procedures
-
Gianola D., Fernando R.L., Stella A. Genomic- assisted prediction of genetic value with semiparametric procedures. Genetics 2006, 173:1761-1776.
-
(2006)
Genetics
, vol.173
, pp. 1761-1776
-
-
Gianola, D.1
Fernando, R.L.2
Stella, A.3
-
12
-
-
80053594474
-
Predicting complex quantitative traits with Bayesian neural networks: a case study with Jersey cows and wheat
-
Gianola D., Okut H., Wiegel K.A., Rosa G.J.M. Predicting complex quantitative traits with Bayesian neural networks: a case study with Jersey cows and wheat. BMC Genet. 2011, 12:87.
-
(2011)
BMC Genet.
, vol.12
, pp. 87
-
-
Gianola, D.1
Okut, H.2
Wiegel, K.A.3
Rosa, G.J.M.4
-
13
-
-
45849117254
-
Reproducing kernel Hilbert spaces regression methods for genomic assisted prediction of quantitative traits
-
Gianola D., van Kaam J.B.C.H.M. Reproducing kernel Hilbert spaces regression methods for genomic assisted prediction of quantitative traits. Genetics 2008, 178:2289-2303.
-
(2008)
Genetics
, vol.178
, pp. 2289-2303
-
-
Gianola, D.1
van Kaam, J.B.C.H.M.2
-
14
-
-
84879743015
-
Priors in whole-genome regression: the bayesian alphabet returns
-
Gianola D. Priors in whole-genome regression: the bayesian alphabet returns. Genetics 2013, 194:3573-3596.
-
(2013)
Genetics
, vol.194
, pp. 3573-3596
-
-
Gianola, D.1
-
15
-
-
84899528042
-
Enhancing genome-enabled prediction by bagging genomic BLUP
-
Gianola D., Weigel K.A., Krämer N., Stella A., Schön C.-C. Enhancing genome-enabled prediction by bagging genomic BLUP. PLoS ONE 2014, 9(4):e91693.
-
(2014)
PLoS ONE
, vol.9
, Issue.4
-
-
Gianola, D.1
Weigel, K.A.2
Krämer, N.3
Stella, A.4
Schön, C.-C.5
-
16
-
-
77953351710
-
An application of random forest to a genome-wide association data set: methodological considerations & new findings
-
Goldstein B.A., Hubbard A.E., Cutler A., Barcellos L.F. An application of random forest to a genome-wide association data set: methodological considerations & new findings. BMC Genet. 2010, 11:49.
-
(2010)
BMC Genet.
, vol.11
, pp. 49
-
-
Goldstein, B.A.1
Hubbard, A.E.2
Cutler, A.3
Barcellos, L.F.4
-
17
-
-
84866328184
-
Genome-enabled prediction of genetic values using radial basis function neural networks
-
Gonzalez-Camacho J.M., de los Campos G., Perez P., Gianola D., Cairns J.E., Mahuku G., Babu R., Crossa J. Genome-enabled prediction of genetic values using radial basis function neural networks. Theor. Appl. Genet. 2012, 125(4):759-771.
-
(2012)
Theor. Appl. Genet.
, vol.125
, Issue.4
, pp. 759-771
-
-
Gonzalez-Camacho, J.M.1
de los Campos, G.2
Perez, P.3
Gianola, D.4
Cairns, J.E.5
Mahuku, G.6
Babu, R.7
Crossa, J.8
-
18
-
-
45849103551
-
Nonparametric methods for incorporating genomic information into genetic evaluations: an application to mortality in broilers
-
Gonzalez-Recio O., Gianola D., Long N., Weigel K.A., Rosa G.J.M., Avendaño S. Nonparametric methods for incorporating genomic information into genetic evaluations: an application to mortality in broilers. Genetics 2008, 178:2305-2313.
-
(2008)
Genetics
, vol.178
, pp. 2305-2313
-
-
Gonzalez-Recio, O.1
Gianola, D.2
Long, N.3
Weigel, K.A.4
Rosa, G.J.M.5
Avendaño, S.6
-
19
-
-
66249089985
-
Genome-assisted prediction of a quantitative trait measured in parents and progeny: application to food conversion rate in chickens
-
Gonzalez-Recio O., Gianola D., Rosa G.J.M., Weigel K.A., Kranis A. Genome-assisted prediction of a quantitative trait measured in parents and progeny: application to food conversion rate in chickens. Genet. Sel. Evol. 2009, 41:3.
-
(2009)
Genet. Sel. Evol.
, vol.41
, pp. 3
-
-
Gonzalez-Recio, O.1
Gianola, D.2
Rosa, G.J.M.3
Weigel, K.A.4
Kranis, A.5
-
20
-
-
77958450850
-
L2-boosting algorithm applied to high dimensional problems in genomic selection
-
González-Recio O., Weigel K.A., Gianola D., Naya H., Rosa G.J.M. L2-boosting algorithm applied to high dimensional problems in genomic selection. Genet. Res. 2010, 92(3):227-237.
-
(2010)
Genet. Res.
, vol.92
, Issue.3
, pp. 227-237
-
-
González-Recio, O.1
Weigel, K.A.2
Gianola, D.3
Naya, H.4
Rosa, G.J.M.5
-
21
-
-
84858051043
-
Genome-wide prediction of discrete traits using Bayesian regressions and machine learning
-
González-Recio O., Forni S. Genome-wide prediction of discrete traits using Bayesian regressions and machine learning. Genet. Sel. Evol. 2011, 43:7.
-
(2011)
Genet. Sel. Evol.
, vol.43
, pp. 7
-
-
González-Recio, O.1
Forni, S.2
-
22
-
-
84871610662
-
The gradient boosting algorithm and random boosting for genome-assisted evaluation in large data sets
-
González-Recio O., Jiménez-Montero J.A., Alenda R. The gradient boosting algorithm and random boosting for genome-assisted evaluation in large data sets. J. Dairy Sci. 2013, 96:614-624.
-
(2013)
J. Dairy Sci.
, vol.96
, pp. 614-624
-
-
González-Recio, O.1
Jiménez-Montero, J.A.2
Alenda, R.3
-
23
-
-
37249083895
-
The impact of genetic relationship information on genome-assisted breeding values
-
Habier D., Fernando R.L., Dekkers J.C. The impact of genetic relationship information on genome-assisted breeding values. Genetics 2007, 177:2389-2397.
-
(2007)
Genetics
, vol.177
, pp. 2389-2397
-
-
Habier, D.1
Fernando, R.L.2
Dekkers, J.C.3
-
24
-
-
33645379655
-
Survival curves of Listeria monocytogenes in chorizos modeled with artificial neural networks
-
Hajmeer M., Basheer I., Cliver D.O. Survival curves of Listeria monocytogenes in chorizos modeled with artificial neural networks. Food Microbiol. 2006, 23:561-570.
-
(2006)
Food Microbiol.
, vol.23
, pp. 561-570
-
-
Hajmeer, M.1
Basheer, I.2
Cliver, D.O.3
-
25
-
-
0003684449
-
-
Springer-Verlag
-
Hastie T., Tibshirani R., Friedman J. The Elements of Statistical Learning. Data Mining, Inference, and Prediction 2009, Springer-Verlag. Second Edition.
-
(2009)
The Elements of Statistical Learning. Data Mining, Inference, and Prediction
-
-
Hastie, T.1
Tibshirani, R.2
Friedman, J.3
-
26
-
-
84905586073
-
-
Neural Networks: A Comprehensive Foundation, 2nd edition, Prentice Hall PTR, Upper Saddle River, NJ, USA (ISBN 0132733501).
-
Haykin, S., 1998. Neural Networks: A Comprehensive Foundation, 2nd edition, Prentice Hall PTR, Upper Saddle River, NJ, USA (ISBN 0132733501).
-
(1998)
-
-
Haykin, S.1
-
27
-
-
0002783328
-
Sire evaluation and genetic trend.
-
In Honor of Dr. J.L. Lush. American Society of Animal Science, American Dairy Science Association, Blacksburg, VA.
-
Henderson, C.R., 1973. Sire evaluation and genetic trend. In: Proceedings of the Animal Breeding Symposium. In Honor of Dr. J.L. Lush. American Society of Animal Science, American Dairy Science Association, Blacksburg, VA. pp. 10-41.
-
(1973)
In: Proceedings of the Animal Breeding Symposium.
, pp. 10-41
-
-
Henderson, C.R.1
-
28
-
-
84871609567
-
Comparison of methods for the implementation of genome-assisted evaluation of Spanish dairy cattle
-
Jiménez-Montero J.A., González-Recio O., Alenda R. Comparison of methods for the implementation of genome-assisted evaluation of Spanish dairy cattle. J. Dairy Sci. 2013, 96:625-634.
-
(2013)
J. Dairy Sci.
, vol.96
, pp. 625-634
-
-
Jiménez-Montero, J.A.1
González-Recio, O.2
Alenda, R.3
-
29
-
-
84882918791
-
Assets of imputation to ultra-high density for productive and functional traits
-
Jiménez-Montero J.A., Gianola D., Weigel K., Alenda R., González-Recio O. Assets of imputation to ultra-high density for productive and functional traits. J. Dairy Sci. 2013, 96(9):6047-6058.
-
(2013)
J. Dairy Sci.
, vol.96
, Issue.9
, pp. 6047-6058
-
-
Jiménez-Montero, J.A.1
Gianola, D.2
Weigel, K.3
Alenda, R.4
González-Recio, O.5
-
30
-
-
0015000439
-
Some results on Tchebycheffian spline functions
-
Kimeldorf G., Wahba G. Some results on Tchebycheffian spline functions. J. Math. Anal. Appl. 1971, 33:82-95.
-
(1971)
J. Math. Anal. Appl.
, vol.33
, pp. 82-95
-
-
Kimeldorf, G.1
Wahba, G.2
-
31
-
-
84905573370
-
Comparison of BLUP and reproducing kernel Hilbert spaces methods for genomic prediction of breeding values in Australian Holstein Friesian cattle.
-
Konstantinov, K.V., Hayes, B.J., 2010 Comparison of BLUP and reproducing kernel Hilbert spaces methods for genomic prediction of breeding values in Australian Holstein Friesian cattle. In: Proceedings of the 9th World Congress on Genetics Applied to Livestock Production, Leipzig, Germany. CD-ROM Communication 0224.
-
(2010)
In: Proceedings of the 9th World Congress on Genetics Applied to Livestock Production, Leipzig, Germany. CD-ROM Communication 0224.
-
-
Konstantinov, K.V.1
Hayes, B.J.2
-
32
-
-
33847350805
-
Component selection and smoothing in smoothing spline analysis of variance models
-
Lin Y., Zhang H. Component selection and smoothing in smoothing spline analysis of variance models. Ann. Stat. 2006, 34:2272-2297.
-
(2006)
Ann. Stat.
, vol.34
, pp. 2272-2297
-
-
Lin, Y.1
Zhang, H.2
-
33
-
-
80855131458
-
Application of support vector regression to genome-assisted prediction of quantitative traits
-
Long N., Gianola D., Rosa G.J.M., Weigel K.A. Application of support vector regression to genome-assisted prediction of quantitative traits. Theor. Appl. Genet. 2011, 123:1065-1074. 10.1007/s00122-011-1648-y.
-
(2011)
Theor. Appl. Genet.
, vol.123
, pp. 1065-1074
-
-
Long, N.1
Gianola, D.2
Rosa, G.J.M.3
Weigel, K.A.4
-
34
-
-
79960833949
-
Marker-assisted prediction of non-additive genetic values
-
Long N., Gianola D., Rosa G.J.M., Weigel K.A. Marker-assisted prediction of non-additive genetic values. Genetica 2011, 139:843-854.
-
(2011)
Genetica
, vol.139
, pp. 843-854
-
-
Long, N.1
Gianola, D.2
Rosa, G.J.M.3
Weigel, K.A.4
-
35
-
-
84858111749
-
A common reference population from four European Holstein populations increases reliability of genomic predictions
-
Lund M.S., de Roos A.P.W., de Vries A.G., Druet T., Ducrocq V., Fritz S., Guillaume F., Guldbrandtsen B., Liu Z., Reents R., Schrooten C., Seefried F., Su G. A common reference population from four European Holstein populations increases reliability of genomic predictions. Genet. Sel. Evol. 2011, 43:43.
-
(2011)
Genet. Sel. Evol.
, vol.43
, pp. 43
-
-
Lund, M.S.1
de Roos, A.P.W.2
de Vries, A.G.3
Druet, T.4
Ducrocq, V.5
Fritz, S.6
Guillaume, F.7
Guldbrandtsen, B.8
Liu, Z.9
Reents, R.10
Schrooten, C.11
Seefried, F.12
Su, G.13
-
36
-
-
16244388597
-
Bayesian classification of tumours by using gene expression data
-
Mallick B.K., Ghosh D., Ghosh M. Bayesian classification of tumours by using gene expression data. J. R. Statist. Soc. B 2005, 67:219-234.
-
(2005)
J. R. Statist. Soc. B
, vol.67
, pp. 219-234
-
-
Mallick, B.K.1
Ghosh, D.2
Ghosh, M.3
-
37
-
-
0035045051
-
Prediction of total genetic value using genome-wide dense marker maps
-
Meuwissen T.H.E., Hayes B.J., Goddard M.E. Prediction of total genetic value using genome-wide dense marker maps. Genetics 2001, 157:1819-1829.
-
(2001)
Genetics
, vol.157
, pp. 1819-1829
-
-
Meuwissen, T.H.E.1
Hayes, B.J.2
Goddard, M.E.3
-
38
-
-
84878817787
-
Predicting complex traits using a diffusion kernel on genetic markers with an application to dairy cattle and wheat data
-
Morota G., Koyama M., Rosa G.J.M., Weigel K.A., Gianola D. Predicting complex traits using a diffusion kernel on genetic markers with an application to dairy cattle and wheat data. Genet. Sel. Evol. 2013, 45:17.
-
(2013)
Genet. Sel. Evol.
, vol.45
, pp. 17
-
-
Morota, G.1
Koyama, M.2
Rosa, G.J.M.3
Weigel, K.A.4
Gianola, D.5
-
39
-
-
84897987101
-
Kernel-based variance component estimation and whole-genome prediction of pre-corrected phenotypes and progeny tests for dairy cow health traits
-
Morota G., Boddhireddy P., Vukasinovic N., Gianola D., DeNise S. Kernel-based variance component estimation and whole-genome prediction of pre-corrected phenotypes and progeny tests for dairy cow health traits. Front. Genet. 2014, 5:56.
-
(2014)
Front. Genet.
, vol.5
, pp. 56
-
-
Morota, G.1
Boddhireddy, P.2
Vukasinovic, N.3
Gianola, D.4
DeNise, S.5
-
40
-
-
77949812757
-
A comparison of five methods to predict genomic breeding values of dairy bulls from genome-wide SNP markers
-
Moser G., Tier B., Crump R.E., Khatkar M.S., Raadsma H.W. A comparison of five methods to predict genomic breeding values of dairy bulls from genome-wide SNP markers. Genet. Sel. Evol. 2009, 41:56.
-
(2009)
Genet. Sel. Evol.
, vol.41
, pp. 56
-
-
Moser, G.1
Tier, B.2
Crump, R.E.3
Khatkar, M.S.4
Raadsma, H.W.5
-
42
-
-
79960171497
-
Predicting genetic values: a kernel-based best linear unbiased prediction with genomic data
-
Ober U., Erbe M., Long N.Y., Porcu E., Schlather M., Simianer H. Predicting genetic values: a kernel-based best linear unbiased prediction with genomic data. Genetics 2011, 188:695-708.
-
(2011)
Genetics
, vol.188
, pp. 695-708
-
-
Ober, U.1
Erbe, M.2
Long, N.Y.3
Porcu, E.4
Schlather, M.5
Simianer, H.6
-
43
-
-
84883641328
-
Predicting expected progeny difference for marbling score in Angus cattle using artificial neural networks and Bayesian regression models
-
Okut H., Wu X.L., Rosa G.J.M., Bauck S., Woodward B., Schnabel R.D., Taylor J.F., Gianola D. Predicting expected progeny difference for marbling score in Angus cattle using artificial neural networks and Bayesian regression models. Genet. Sel. Evol. 2013, 45:34.
-
(2013)
Genet. Sel. Evol.
, vol.45
, pp. 34
-
-
Okut, H.1
Wu, X.L.2
Rosa, G.J.M.3
Bauck, S.4
Woodward, B.5
Schnabel, R.D.6
Taylor, J.F.7
Gianola, D.8
-
44
-
-
84901049318
-
Genomic-enabled prediction with classification algorithms
-
Ornella L., Perez P., Tapia E., Gonzalez-Camacho J.M., Burgueno J., Zhang X., Singh S., Vicente F.S., Bonnett D., Dreisigacker S., Singh R., Long N., Crossa J. Genomic-enabled prediction with classification algorithms. Heredity 2014, 112:616-626. http://dx.doi.org/10.1038/hdy.2013.144.
-
(2014)
Heredity
, vol.112
, pp. 616-626
-
-
Ornella, L.1
Perez, P.2
Tapia, E.3
Gonzalez-Camacho, J.M.4
Burgueno, J.5
Zhang, X.6
Singh, S.7
Vicente, F.S.8
Bonnett, D.9
Dreisigacker, S.10
Singh, R.11
Long, N.12
Crossa, J.13
-
45
-
-
33747477568
-
Penalised splines and reproducing kernel methods
-
Pearce N., Wand M. Penalised splines and reproducing kernel methods. Am. Stat. 2006, 60:233-240.
-
(2006)
Am. Stat.
, vol.60
, pp. 233-240
-
-
Pearce, N.1
Wand, M.2
-
46
-
-
84883167942
-
Comparison between linear and non-parametric regression models for genome-enabled prediction in wheat
-
(10.1534/g3.112.003665)
-
Perez-Rodriguez P., Gianola D., Gonzalez-Camacho J.M., Crossa J., Manes Y., Dreisigacker S. Comparison between linear and non-parametric regression models for genome-enabled prediction in wheat. G3-Genes Genomes Genet. 2012, 2:1595-1605. (10.1534/g3.112.003665).
-
(2012)
G3-Genes Genomes Genet.
, vol.2
, pp. 1595-1605
-
-
Perez-Rodriguez, P.1
Gianola, D.2
Gonzalez-Camacho, J.M.3
Crossa, J.4
Manes, Y.5
Dreisigacker, S.6
-
47
-
-
84882638573
-
Technical note: an R package for fitting Bayesian regularized neural networks with application in animal breeding
-
Perez-Rodriguez P., Gianola D., Weigel K.A., Rosa G.J.M., Crossa J. Technical note: an R package for fitting Bayesian regularized neural networks with application in animal breeding. J. Dairy. Sci. 2013, 91(8):3522-3531.
-
(2013)
J. Dairy. Sci.
, vol.91
, Issue.8
, pp. 3522-3531
-
-
Perez-Rodriguez, P.1
Gianola, D.2
Weigel, K.A.3
Rosa, G.J.M.4
Crossa, J.5
-
48
-
-
84952503562
-
Thirteen ways to look at the correlation coefficient
-
Rodgers J.L., Nicewander W.A. Thirteen ways to look at the correlation coefficient. Am. Stat. 1988, 42(1):59-66.
-
(1988)
Am. Stat.
, vol.42
, Issue.1
, pp. 59-66
-
-
Rodgers, J.L.1
Nicewander, W.A.2
-
49
-
-
84899857717
-
Combining genomic and genealogical information in a reproducing kernel Hilbert spaces regression model for genome-enabled predictions in dairy cattle
-
Rodríguez-Ramilo S.T., García-Cortés L.A., González-Recio O. Combining genomic and genealogical information in a reproducing kernel Hilbert spaces regression model for genome-enabled predictions in dairy cattle. PLoS ONE 2014, 9(3):e93424.
-
(2014)
PLoS ONE
, vol.9
, Issue.3
-
-
Rodríguez-Ramilo, S.T.1
García-Cortés, L.A.2
González-Recio, O.3
-
50
-
-
77954187925
-
Genomic similarity and kernel methods II: methods for genomic information
-
Schaid D.J. Genomic similarity and kernel methods II: methods for genomic information. Hum. Hered. 2010, 70:132-140.
-
(2010)
Hum. Hered.
, vol.70
, pp. 132-140
-
-
Schaid, D.J.1
-
51
-
-
78650732213
-
Surface estimation, variable selection, and the nonparametric oracle property
-
Storlie C., Bondell H., Reich B., Zhang H. Surface estimation, variable selection, and the nonparametric oracle property. Stat. Sin. 2010, 21:679-705.
-
(2010)
Stat. Sin.
, vol.21
, pp. 679-705
-
-
Storlie, C.1
Bondell, H.2
Reich, B.3
Zhang, H.4
-
52
-
-
0001287271
-
Regression shrinkage and selection via the lasso
-
Tibshirani R. Regression shrinkage and selection via the lasso. J. R. Stat. Soc.: Ser. B 1996, 58:267-288.
-
(1996)
J. R. Stat. Soc.: Ser. B
, vol.58
, pp. 267-288
-
-
Tibshirani, R.1
-
53
-
-
84885445197
-
Genome-enabled methods for predicting litter size in pigs: a comparison
-
Tusell L., Pérez-Rodríguez P., Forni S., Wu X.L., Gianola D. Genome-enabled methods for predicting litter size in pigs: a comparison. Animal 2013, 7:1739-1749.
-
(2013)
Animal
, vol.7
, pp. 1739-1749
-
-
Tusell, L.1
Pérez-Rodríguez, P.2
Forni, S.3
Wu, X.L.4
Gianola, D.5
-
54
-
-
84897639210
-
Model averaging for genome-enabled prediction with reproducing kernel Hilbert spaces: a case study with pig litter size and wheat yield
-
Tusell L., Pérez-Rodríguez P., Forni S., Gianola D. Model averaging for genome-enabled prediction with reproducing kernel Hilbert spaces: a case study with pig litter size and wheat yield. J. Anim. Breed. Genet. 2014, 131(2):105-115.
-
(2014)
J. Anim. Breed. Genet.
, vol.131
, Issue.2
, pp. 105-115
-
-
Tusell, L.1
Pérez-Rodríguez, P.2
Forni, S.3
Gianola, D.4
-
55
-
-
77952760672
-
International genomic evaluation methods for dairy cattle
-
VanRaden P., Sullivan P. International genomic evaluation methods for dairy cattle. Genet. Sel. Evol. 2010, 42:1-9.
-
(2010)
Genet. Sel. Evol.
, vol.42
, pp. 1-9
-
-
VanRaden, P.1
Sullivan, P.2
-
57
-
-
84870690746
-
A comprehensive genetic approach for improving prediction of skin cancer risk in humans
-
Vazquez A.I., de los Campos G., Klimentidis Y.C., Rosa G.J.M., Gianola D., Yi N., Allison D.B. A comprehensive genetic approach for improving prediction of skin cancer risk in humans. Genetics 2012, 192:1493-1502.
-
(2012)
Genetics
, vol.192
, pp. 1493-1502
-
-
Vazquez, A.I.1
de los Campos, G.2
Klimentidis, Y.C.3
Rosa, G.J.M.4
Gianola, D.5
Yi, N.6
Allison, D.B.7
-
58
-
-
0003466536
-
-
Society for Industrial and Applied Mathematics, Philadelphia
-
Wahba G. Spline Model for Observational Data 1990, Society for Industrial and Applied Mathematics, Philadelphia.
-
(1990)
Spline Model for Observational Data
-
-
Wahba, G.1
-
59
-
-
54949091706
-
-
MIT Press, Cambridge, MA. B. Scholkopf, C. Burges, A. Smola (Eds.)
-
Wahba G. Advances in Kernel Methods: Support Vector Machines, Reproducing Kernel Hilbert Spaces and the Randomized GAVC 1999, 68-88. MIT Press, Cambridge, MA. B. Scholkopf, C. Burges, A. Smola (Eds.).
-
(1999)
Advances in Kernel Methods: Support Vector Machines, Reproducing Kernel Hilbert Spaces and the Randomized GAVC
, pp. 68-88
-
-
Wahba, G.1
-
60
-
-
0030327681
-
Understanding neural networks as statistical tools
-
Warner B., Misra M. Understanding neural networks as statistical tools. Am. Stat. 1996, 50(4):284-293.
-
(1996)
Am. Stat.
, vol.50
, Issue.4
, pp. 284-293
-
-
Warner, B.1
Misra, M.2
-
61
-
-
77954140531
-
Common SNPs explain a large proportion of the heritability for human height
-
Yang J., Benyamin B., McEvoy B.P., Gordon S., Henders A.K., Nyholt D.R., Madden P.A., Heath A.C., Martin N.G., Montgomery G.W., Goddard M.E., Visscher P.M. Common SNPs explain a large proportion of the heritability for human height. Nat. Genet. 2010, 42:565-569.
-
(2010)
Nat. Genet.
, vol.42
, pp. 565-569
-
-
Yang, J.1
Benyamin, B.2
McEvoy, B.P.3
Gordon, S.4
Henders, A.K.5
Nyholt, D.R.6
Madden, P.A.7
Heath, A.C.8
Martin, N.G.9
Montgomery, G.W.10
Goddard, M.E.11
Visscher, P.M.12
-
62
-
-
84884349446
-
Random Forests approach for identifying additive and epistatic single nucleotide polymorphisms associated with residual feed intake in dairy cattle
-
Yao C., Spurlock D.M., Armentano L.E., Page C.D., VandeHaar M.J., Bickhart D.M., Weigel K.A. Random Forests approach for identifying additive and epistatic single nucleotide polymorphisms associated with residual feed intake in dairy cattle. J. Dairy. Sci. 2013, 96(10):6716-6729.
-
(2013)
J. Dairy. Sci.
, vol.96
, Issue.10
, pp. 6716-6729
-
-
Yao, C.1
Spurlock, D.M.2
Armentano, L.E.3
Page, C.D.4
VandeHaar, M.J.5
Bickhart, D.M.6
Weigel, K.A.7
-
63
-
-
33846114377
-
The adaptive lasso and its oracle properties
-
Zou H. The adaptive lasso and its oracle properties. J. Am. Stat. Assoc. 2006, 101(476):1418-1429.
-
(2006)
J. Am. Stat. Assoc.
, vol.101
, Issue.476
, pp. 1418-1429
-
-
Zou, H.1
|