-
1
-
-
0000264032
-
Energy Distribution Function of Quasiparticles in Mesoscopic Wires
-
H. Pothier, S. Guéron, N. O. Birge, D. Esteve, and M. H. Devoret, Energy Distribution Function of Quasiparticles in Mesoscopic Wires, Phys. Rev. Lett. 79, 3490 (1997).
-
(1997)
Phys. Rev. Lett.
, vol.79
, pp. 3490
-
-
Pothier, H.1
Guéron, S.2
Birge, N.O.3
Esteve, D.4
Devoret, M.H.5
-
2
-
-
84884888741
-
Nanowire Thermometers
-
P. Peng, Z. Su, Z. Liu, Q. Yu, Z. Cheng, and J. Bao, Nanowire Thermometers, Nanoscale 5, 9532 (2013).
-
(2013)
Nanoscale
, vol.5
, pp. 9532
-
-
Peng, P.1
Su, Z.2
Liu, Z.3
Yu, Q.4
Cheng, Z.5
Bao, J.6
-
3
-
-
0037034046
-
Nanotechnology: Carbon Nanothermometer Containing Gallium
-
Y. Gao and Y. Bando, Nanotechnology: Carbon Nanothermometer Containing Gallium, Nature (London) 415, 599 (2002).
-
(2002)
Nature (London)
, vol.415
, pp. 599
-
-
Gao, Y.1
Bando, Y.2
-
4
-
-
77957132628
-
How Small Can Thermal Machines Be? The Smallest Possible Refrigerator
-
N. Linden, S. Popescu, and P. Skrzypczyk, How Small Can Thermal Machines Be? The Smallest Possible Refrigerator, Phys. Rev. Lett. 105, 130401 (2010).
-
(2010)
Phys. Rev. Lett.
, vol.105
, pp. 130401
-
-
Linden, N.1
Popescu, S.2
Skrzypczyk, P.3
-
6
-
-
19544362366
-
Existence of Temperature on the Nanoscale
-
M. Hartmann, G. Mahler, and O. Hess, Existence of Temperature on the Nanoscale, Phys. Rev. Lett. 93, 080402 (2004).
-
(2004)
Phys. Rev. Lett.
, vol.93
, pp. 080402
-
-
Hartmann, M.1
Mahler, G.2
Hess, O.3
-
7
-
-
19944374078
-
Measurable Consequences of the Local Breakdown of the Concept of Temperature
-
M. Hartmann and G. Mahler, Measurable Consequences of the Local Breakdown of the Concept of Temperature, Europhys. Lett. 70, 579 (2005).
-
(2005)
Europhys. Lett.
, vol.70
, pp. 579
-
-
Hartmann, M.1
Mahler, G.2
-
8
-
-
33646759564
-
-
M. Hartmann, Minimal Length Scales for the Existence of Local Temperature, Contemp. Phys. 47, 89 (2006).
-
(2006)
Contemp. Phys.
, vol.47
, pp. 89
-
-
Hartmann, M.1
-
9
-
-
84859800615
-
Intensive Temperature and Quantum Correlations for Refined Quantum Measurements
-
A. Ferraro, A. Garcia-Saez, and A. Acin, Intensive Temperature and Quantum Correlations for Refined Quantum Measurements, Europhys. Lett. 98, 10009 (2012).
-
(2012)
Europhys. Lett.
, vol.98
, pp. 10009
-
-
Ferraro, A.1
Garcia-Saez, A.2
Acin, A.3
-
10
-
-
0347693389
-
-
M. Vojta, Quantum Phase Transitions, Rep. Prog. Phys. 66, 2069 (2003).
-
(2003)
Rep. Prog. Phys.
, vol.66
, pp. 2069
-
-
Vojta, M.1
-
11
-
-
84905455903
-
-
Statistical Mechanics: Rigorous Results (Benjamin, New York
-
D. Ruelle, Statistical Mechanics: Rigorous Results (Benjamin, New York, 1969).
-
(1969)
-
-
Ruelle, D.1
-
12
-
-
0005762716
-
-
J. Ginibre, Reduced Density Matrices of Quantum Gases. II. Cluster Property, J. Math. Phys. (N.Y.) 6, 252 (1965).
-
(1965)
J. Math. Phys.
, vol.6
, pp. 252
-
-
Ginibre, J.1
-
13
-
-
26944447482
-
-
W. Greenberg, Critical Temperature Bounds of Quantum Lattice Gases, Commun. Math. Phys. 13, 335 (1969).
-
(1969)
Commun. Math. Phys.
, vol.13
, pp. 335
-
-
Greenberg, W.1
-
15
-
-
21844515703
-
Uniqueness and Clustering Properties of Gibbs States for Classical and Quantum Unbounded Spin Lattices
-
Y. M. Park and H. J. Yoo, Uniqueness and Clustering Properties of Gibbs States for Classical and Quantum Unbounded Spin Lattices, J. Stat. Phys. 80, 223 (1995).
-
(1995)
J. Stat. Phys.
, vol.80
, pp. 223
-
-
Park, Y.M.1
Yoo, H.J.2
-
16
-
-
0002417511
-
Fifty Years of the Exact Solution of the Two-Dimensional Ising Model by Onsager
-
S. M. Bhattacharjee and A. Khare, Fifty Years of the Exact Solution of the Two-Dimensional Ising Model by Onsager, Curr. Sci. 69, 816 (1995).
-
(1995)
Curr. Sci.
, vol.69
, pp. 816
-
-
Bhattacharjee, S.M.1
Khare, A.2
-
17
-
-
33144456594
-
Canonical Typicality
-
S. Goldstein, J. L. Lebowitz, R. Tumulka, and N. Zanghi, Canonical Typicality, Phys. Rev. Lett. 96, 050403 (2006).
-
(2006)
Phys. Rev. Lett.
, vol.96
, pp. 050403
-
-
Goldstein, S.1
Lebowitz, J.L.2
Tumulka, R.3
Zanghi, N.4
-
18
-
-
38549171333
-
Exact Relaxation in a Class of Nonequilibrium Quantum Lattice Systems
-
M. Cramer, C. M. Dawson, J. Eisert, and T. J. Osborne, Exact Relaxation in a Class of Nonequilibrium Quantum Lattice Systems, Phys. Rev. Lett. 100, 030602 (2008).
-
(2008)
Phys. Rev. Lett.
, vol.100
, pp. 030602
-
-
Cramer, M.1
Dawson, C.M.2
Eisert, J.3
Osborne, T.J.4
-
19
-
-
67650902389
-
Quantum Mechanical Evolution towards Thermal Equilibrium
-
N. Linden, S. Popescu, A. J. Short, and A.Winter, Quantum Mechanical Evolution towards Thermal Equilibrium, Phys. Rev. E 79, 061103 (2009).
-
(2009)
Phys. Rev. E
, vol.79
, pp. 061103
-
-
Linden, N.1
Popescu, S.2
Short, A.J.3
Winter, A.4
-
20
-
-
42249112261
-
Thermalization and Its Mechanism for Generic Isolated Quantum Systems
-
M. Rigol, V. Dunjko, and M. Olshanii, Thermalization and Its Mechanism for Generic Isolated Quantum Systems, Nature (London) 452, 854 (2008).
-
(2008)
Nature
, vol.452
, pp. 854
-
-
Rigol, M.1
Dunjko, V.2
Olshanii, M.3
-
21
-
-
79958722726
-
-
V. I. Yukalov, Equilibration and Thermalization in Finite Quantum Systems, Laser Phys. Lett. 8, 485 (2011).
-
(2011)
Laser Phys. Lett.
, vol.8
, pp. 485
-
-
Yukalov, V.I.1
-
22
-
-
84860213048
-
Equilibration of Isolated Macroscopic Quantum Systems
-
P. Reimann and M. Kastner, Equilibration of Isolated Macroscopic Quantum Systems, New J. Phys. 14, 043020 (2012).
-
(2012)
New J. Phys.
, vol.14
, pp. 043020
-
-
Reimann, P.1
Kastner, M.2
-
23
-
-
84856443498
-
Thermalization in Nature and on a Quantum Computer
-
A. Riera, C. Gogolin, and J. Eisert, Thermalization in Nature and on a Quantum Computer, Phys. Rev. Lett. 108, 080402 (2012).
-
(2012)
Phys. Rev. Lett.
, vol.108
, pp. 080402
-
-
Riera, A.1
Gogolin, C.2
Eisert, J.3
-
25
-
-
84875487767
-
The Complexity of Energy Eigenstates as a Mechanism for Equilibration
-
L. Masanes, A. J. Roncaglia, and A. Acín, The Complexity of Energy Eigenstates as a Mechanism for Equilibration, Phys. Rev. E 87, 032137 (2013).
-
(2013)
Phys. Rev. E
, vol.87
, pp. 032137
-
-
Masanes, L.1
Roncaglia, A.J.2
Acín, A.3
-
26
-
-
18244397407
-
Non-local Updates for Quantum Monte Carlo Simulations
-
M. Troyer, F. Alet, S. Trebst, and S. Wessel, Non-local Updates for Quantum Monte Carlo Simulations, AIP Conf. Proc. 690, 156 (2003).
-
(2003)
AIP Conf. Proc.
, vol.690
, pp. 156
-
-
Troyer, M.1
Alet, F.2
Trebst, S.3
Wessel, S.4
-
27
-
-
33745315996
-
Spectral Gap and Exponential Decay of Correlations
-
M. B. Hastings and T. Koma, Spectral Gap and Exponential Decay of Correlations, Commun. Math. Phys. 265, 781 (2006).
-
(2006)
Commun. Math. Phys.
, vol.265
, pp. 781
-
-
Hastings, M.B.1
Koma, T.2
-
28
-
-
33646729744
-
Lieb-Robinson Bounds and the Exponential Clustering Theorem
-
B. Nachtergaele and R. Sims, Lieb-Robinson Bounds and the Exponential Clustering Theorem, Commun. Math. Phys. 265, 119 (2006).
-
(2006)
Commun. Math. Phys.
, vol.265
, pp. 119
-
-
Nachtergaele, B.1
Sims, R.2
-
29
-
-
33748045156
-
Propagation of Correlations in Quantum Lattice Systems
-
B. Nachtergaele, Y. Ogata, and R. Sims, Propagation of Correlations in Quantum Lattice Systems, J. Stat. Phys. 124, 1 (2006).
-
(2006)
J. Stat. Phys.
, vol.124
, pp. 1
-
-
Nachtergaele, B.1
Ogata, Y.2
Sims, R.3
-
30
-
-
84905455905
-
-
A Polynomial-Time Algorithm for the Ground State of 1D Gapped Local Hamiltonians, arXiv:1307.5143.
-
Z. Landau, U. Vazirani, and T. Vidick, A Polynomial-Time Algorithm for the Ground State of 1D Gapped Local Hamiltonians, arXiv:1307.5143.
-
-
-
Landau, Z.1
Vazirani, U.2
Vidick, T.3
-
31
-
-
84905455896
-
-
Everything also works with more technical assumptions for certain cases where the local Hilbert spaces are not finite dimensional. But, in this case, the local terms of theHamiltonian need to be bounded in operator norm by a constant. Hence, our results are not applicable to bosonic systems.
-
Everything also works with more technical assumptions for certain cases where the local Hilbert spaces are not finite dimensional. But, in this case, the local terms of theHamiltonian need to be bounded in operator norm by a constant. Hence, our results are not applicable to bosonic systems.
-
-
-
-
32
-
-
79952822509
-
The Growth Constants of Lattice Trees and Lattice Animals in High Dimensions
-
Y. M. Miranda and G. Slade, The Growth Constants of Lattice Trees and Lattice Animals in High Dimensions, Electron. Commun. Probab. 16, 129 (2011).
-
(2011)
Electron. Commun. Probab.
, vol.16
, pp. 129
-
-
Miranda, Y.M.1
Slade, G.2
-
33
-
-
21844489840
-
-
M. Penrose, Self-Avoiding Walks and Trees in Spread-Out Lattices, J. Stat. Phys. 77, 3 (1994).
-
(1994)
J. Stat. Phys.
, vol.77
, pp. 3
-
-
Penrose, M.1
-
34
-
-
84861881632
-
Quasi-locality and Efficient Simulation of Markovian Quantum Dynamics
-
T. Barthel and M. Kliesch, Quasi-locality and Efficient Simulation of Markovian Quantum Dynamics, Phys. Rev. Lett. 108, 230504 (2012).
-
(2012)
Phys. Rev. Lett.
, vol.108
, pp. 230504
-
-
Barthel, T.1
Kliesch, M.2
-
35
-
-
77952338606
-
-
D. Poulin, Lieb-Robinson Bound and Locality for General Markovian Quantum Dynamics, Phys. Rev. Lett. 104, 190401 (2010).
-
(2010)
Phys. Rev. Lett.
, vol.104
, pp. 190401
-
-
Poulin, D.1
-
36
-
-
84856426875
-
Lieb-Robinson Bounds and Existence of the Thermodynamic Limit for a Class of Irreversible Quantum Dynamics
-
B. Nachtergaele, A. Vershynina, and V. A. Zagrebnov, Lieb-Robinson Bounds and Existence of the Thermodynamic Limit for a Class of Irreversible Quantum Dynamics, AMS Contemporary Mathematics 552, 161 (2011).
-
(2011)
AMS Contemporary Mathematics
, vol.552
, pp. 161
-
-
Nachtergaele, B.1
Vershynina, A.2
Zagrebnov, V.A.3
-
37
-
-
19644396584
-
-
M. B. Hastings, Decay of Correlations in Fermi Systems at Non-zero Temperature, Phys. Rev. Lett. 93, 126402 (2004).
-
(2004)
Phys. Rev. Lett.
, vol.93
, pp. 126402
-
-
Hastings, M.B.1
-
38
-
-
0001158846
-
Absence of Ferromagnetism or Antiferromagnetism in One-or Two-Dimensional Isotropic Heisenberg Models
-
N. D. Mermin and H. Wagner, Absence of Ferromagnetism or Antiferromagnetism in One-or Two-Dimensional Isotropic Heisenberg Models, Phys. Rev. Lett. 17, 1133 (1966).
-
(1966)
Phys. Rev. Lett.
, vol.17
, pp. 1133
-
-
Mermin, N.D.1
Wagner, H.2
-
39
-
-
0000851611
-
The Kosterlitz-Thouless Transition in Two-Dimensional Abelian Spin Systems and the Coulomb Gas
-
J. Fröhlich and T. Spencer, The Kosterlitz-Thouless Transition in Two-Dimensional Abelian Spin Systems and the Coulomb Gas, Commun. Math. Phys. 81, 527 (1981).
-
(1981)
Commun. Math. Phys.
, vol.81
, pp. 527
-
-
Fröhlich, J.1
Spencer, T.2
-
40
-
-
33344468870
-
-
M. B. Hastings, Solving Gapped Hamiltonians Locally, Phys. Rev. B 73, 085115 (2006).
-
(2006)
Phys. Rev. B
, vol.73
, pp. 085115
-
-
Hastings, M.B.1
-
41
-
-
84905455897
-
-
Stability of Local Quantum Dissipative Systems, arXiv:1303.4744.
-
T. S. Cubitt, A. Lucia, S. Michalakis, and D. Perez-Garcia, Stability of Local Quantum Dissipative Systems, arXiv:1303.4744.
-
-
-
Cubitt, T.S.1
Lucia, A.2
Michalakis, S.3
Perez-Garcia, D.4
-
42
-
-
84886862717
-
Rapid Mixing Implies Exponential Decay of Correlations
-
M. J. Kastoryano and J. Eisert, Rapid Mixing Implies Exponential Decay of Correlations, J. Math. Phys. (N.Y.) 54, 102201 (2013).
-
(2013)
J. Math. Phys.
, vol.54
, pp. 102201
-
-
Kastoryano, M.J.1
Eisert, J.2
-
43
-
-
84880506998
-
Stability of Frustration-Free Hamiltonians
-
S. Michalakis and J. Pytel, Stability of Frustration-Free Hamiltonians, Commun. Math. Phys. 322, 277 (2013).
-
(2013)
Commun. Math. Phys.
, vol.322
, pp. 277
-
-
Michalakis, S.1
Pytel, J.2
-
44
-
-
78049437309
-
Topological Quantum Order: Stability under Local Perturbations
-
S. Bravyi, M. Hastings, and S. Michalakis, Topological Quantum Order: Stability under Local Perturbations, J. Math. Phys. (N.Y.) 51, 093512 (2010).
-
(2010)
J. Math. Phys.
, vol.51
, pp. 093512
-
-
Bravyi, S.1
Hastings, M.2
Michalakis, S.3
-
45
-
-
46949084674
-
Entanglement Spectrum as a Generalization of Entanglement Entropy: Identification of Topological Order in Non-Abelian Fractional Quantum Hall Effect States
-
H. Li and F. D. M. Haldane, Entanglement Spectrum as a Generalization of Entanglement Entropy: Identification of Topological Order in Non-Abelian Fractional Quantum Hall Effect States, Phys. Rev. Lett. 101, 010504 (2008).
-
(2008)
Phys. Rev. Lett.
, vol.101
, pp. 010504
-
-
Li, H.1
Haldane, F.D.H.2
|