-
3
-
-
12344271673
-
-
JUPSAU 0031-9015 10.1143/JPSJ.12.570
-
R. Kubo, J. Phys. Soc. Japan 12, 570 (1957). JUPSAU 0031-9015 10.1143/JPSJ.12.570
-
(1957)
J. Phys. Soc. Japan
, vol.12
, pp. 570
-
-
Kubo, R.1
-
4
-
-
0000514837
-
-
PTPKAV 0033-068X 10.1143/PTP.33.423;
-
H. Mori, Prog. Theor. Phys. 33, 423 (1965) PTPKAV 0033-068X 10.1143/PTP.33.423;
-
(1965)
Prog. Theor. Phys.
, vol.33
, pp. 423
-
-
Mori, H.1
-
5
-
-
0000447507
-
-
PTPKAV 10.1143/PTP.34.399 0033-068X
-
H. Mori, Prog. Theor. Phys. 34, 399 (1965). PTPKAV 10.1143/PTP.34.399 0033-068X
-
(1965)
Prog. Theor. Phys.
, vol.34
, pp. 399
-
-
Mori, H.1
-
6
-
-
0000799869
-
-
An in-depth study of the effects of phonons on the properties of electrons in normal metals is contained in, (); PHRVAO 0031-899X 10.1103/PhysRev.134.A566
-
An in-depth study of the effects of phonons on the properties of electrons in normal metals is contained in R. E. Prange and L. P. Kadanoff, Phys. Rev. 134, A566 (1964); PHRVAO 0031-899X 10.1103/PhysRev.134.A566
-
(1964)
Phys. Rev.
, vol.134
-
-
Prange, R.E.1
Kadanoff, L.P.2
-
7
-
-
33749018320
-
-
10.1016/0003-4916(64)90008-9.
-
T. Holstein, Ann. Phys. (NY) 29, 410 (1964) 10.1016/0003-4916(64)90008-9.
-
(1964)
Ann. Phys. (NY)
, vol.29
, pp. 410
-
-
Holstein, T.1
-
8
-
-
84905387175
-
-
In particular, Boltzmann equations have been reproduced through a perturbative treatment of the Kubo formula to leading order in the Migdal expansion (Equation presented), where (Equation presented) (Equation presented) is the electron (ion) mass. Then, in the metals, the phenomenological theory works well even if the parameter giving the mass enhancement is not small, provided the states near the Fermi level are propagating quasiparticle states. In any case, the Fermi energy has to be much larger than other energies such as (Equation presented) or (Equation presented), where (Equation presented) is the Debye frequency.
-
In particular, Boltzmann equations have been reproduced through a perturbative treatment of the Kubo formula to leading order in the Migdal expansion (Equation presented), where (Equation presented) (Equation presented) is the electron (ion) mass. Then, in the metals, the phenomenological theory works well even if the parameter giving the mass enhancement is not small, provided the states near the Fermi level are propagating quasiparticle states. In any case, the Fermi energy has to be much larger than other energies such as (Equation presented) or (Equation presented), where (Equation presented) is the Debye frequency.
-
-
-
-
9
-
-
0000325636
-
-
The coupling strength to phonon or impurity (Equation presented) differs from the dimensionless parameter introduced by, ()
-
The coupling strength to phonon or impurity (Equation presented) differs from the dimensionless parameter introduced by A. B. Migdal, Zh. Eksp. Teor. Fiz. 34, 1438 (1958)
-
(1958)
Zh. Eksp. Teor. Fiz.
, vol.34
, pp. 1438
-
-
Migdal, A.B.1
-
10
-
-
0001316477
-
-
[, ()], which, in particular, is quadratic in the coupling strength.
-
A. B. Migdal, [Sov. Phys. JETP 7, 996 (1958)], which, in particular, is quadratic in the coupling strength.
-
(1958)
Sov. Phys. JETP
, vol.7
, pp. 996
-
-
Migdal, A.B.1
-
12
-
-
50449114857
-
-
PHYSAG 0031-8914 10.1016/S0031-8914(54)92646-4
-
L. Van Hove, Physica (Utrecht) 21, 517 (1955). PHYSAG 0031-8914 10.1016/S0031-8914(54)92646-4
-
(1955)
Physica (Utrecht)
, vol.21
, pp. 517
-
-
Van Hove, L.1
-
13
-
-
11744282385
-
-
PHYSAG 0031-8914 10.1016/0031-8914(60)90143-9
-
E. Verboven, Physica 26, 1091 (1960). PHYSAG 0031-8914 10.1016/0031-8914(60)90143-9
-
(1960)
Physica
, vol.26
, pp. 1091
-
-
Verboven, E.1
-
15
-
-
36149013316
-
-
PHRVAO 0031-899X 10.1103/PhysRev.124.983
-
R. Zwanzig, Phys. Rev. 124, 983 (1961). PHRVAO 0031-899X 10.1103/PhysRev.124.983
-
(1961)
Phys. Rev.
, vol.124
, pp. 983
-
-
Zwanzig, R.1
-
16
-
-
25544479102
-
-
0556-2805 10.1103/PhysRevB.6.1226
-
W. Götze and P. Wölfle, Phys. Rev. B 6, 1226 (1972). 0556-2805 10.1103/PhysRevB.6.1226
-
(1972)
Phys. Rev. B
, vol.6
, pp. 1226
-
-
Götze, W.1
Wölfle, P.2
-
17
-
-
4244025295
-
-
0556-2791 10.1103/PhysRevA.6.769
-
V. M. Kenkre and M. Dresden, Phys. Rev. A 6, 769 (1972). 0556-2791 10.1103/PhysRevA.6.769
-
(1972)
Phys. Rev. A
, vol.6
, pp. 769
-
-
Kenkre, V.M.1
Dresden, M.2
-
18
-
-
4243194875
-
-
PRLTAO 0031-9007 10.1103/PhysRevLett.31.1397
-
P. N. Argyres and J. L. Sigel, Phys. Rev. Lett. 31, 1397 (1973). PRLTAO 0031-9007 10.1103/PhysRevLett.31.1397
-
(1973)
Phys. Rev. Lett.
, vol.31
, pp. 1397
-
-
Argyres, P.N.1
Sigel, J.L.2
-
19
-
-
46049094712
-
-
PRBMDO 1098-0121 10.1103/PhysRevB.77.245131
-
S. Mukerjee and B. S. Shastry, Phys. Rev. B 77, 245131 (2008). PRBMDO 1098-0121 10.1103/PhysRevB.77.245131
-
(2008)
Phys. Rev. B
, vol.77
, pp. 245131
-
-
Mukerjee, S.1
Shastry, B.S.2
-
20
-
-
84879721623
-
-
In particular, it has been conjectured [17] that (i) integrable systems exhibit ballistic behavior, i.e.
-
In particular, it has been conjectured [17] that (i) integrable systems exhibit ballistic behavior, i.e., dissipationless finite-temperature conductivity, if the Drude coefficient is different from zero at (Equation presented), and remain ideal insulators, i.e., (Equation presented), at all temperatures if (Equation presented); (ii) a generic nonintegrable system displays finite conductivity at finite temperature, i.e., it is characterized by diffusive motion, being (Equation presented). We will restrict our attention to normal conductors, i.e., (Equation presented). On the other hand, we emphasize that in these systems, (Equation presented) only if the exact eigenstates are used in Eq. (5), so that we will retain this contribution up to the end of the calculation. We also emphasize that at (Equation presented), the Drude coefficient provides the criterion to distinguish between conductors and insulators. In particular, it has recently been shown [see B. Hetenyi, Phys. Rev. B 87, 235123 (2013) PRBMDO 1098-0121 10.1103/PhysRevB.87.235123] that wave functions, i.e., eigenfunctions of the total current operator, give rise to a finite (Equation presented) and are therefore metallic.
-
(2013)
Phys. Rev. B
, vol.87
, pp. 235123
-
-
Hetenyi, B.1
-
22
-
-
0000178843
-
-
PRBMDO 10.1103/PhysRevB.53.983 0163-1829
-
X. Zotos and P. Prelovsek, Phys. Rev. B 53, 983 (1996). PRBMDO 10.1103/PhysRevB.53.983 0163-1829
-
(1996)
Phys. Rev. B
, vol.53
, pp. 983
-
-
Zotos, X.1
Prelovsek, P.2
-
23
-
-
0001430550
-
-
0556-2805 10.1103/PhysRevB.16.2437
-
P. F. Maldague, Phys. Rev. B 16, 2437 (1977). 0556-2805 10.1103/PhysRevB.16.2437
-
(1977)
Phys. Rev. B
, vol.16
, pp. 2437
-
-
Maldague, P.F.1
-
24
-
-
0000103131
-
-
APNYA6 0003-4916 10.1016/0003-4916(63)90078-2
-
L. P. Kadanoff and P. C. Martin, Ann. Phys. (NY) 24, 419 (1963). APNYA6 0003-4916 10.1016/0003-4916(63)90078-2
-
(1963)
Ann. Phys. (NY)
, vol.24
, pp. 419
-
-
Kadanoff, L.P.1
Martin, P.C.2
-
25
-
-
84905392468
-
-
This function allows one to relate the dc conductivity to physically meaningful quantities as, for example, the Einstein diffusion coefficient [3].
-
This function allows one to relate the dc conductivity to physically meaningful quantities as, for example, the Einstein diffusion coefficient [3].
-
-
-
-
26
-
-
0021601852
-
-
in, edited by F. Seitz and D. Turnbull, Vol. 38, (Academic, New York), p..
-
F. M. Peeters and J. T. Devreese, in Solid State Physics, edited by F. Seitz and D. Turnbull, Vol. 38, (Academic, New York, 1984), p. 81.
-
(1984)
Solid State Physics
, pp. 81
-
-
Peeters, F.M.1
Devreese, J.T.2
-
27
-
-
36749105789
-
-
JMAPAQ 0022-2488 10.1063/1.524020
-
K. M. Van Vliet, J. Math. Phys. 20, 2573 (1979). JMAPAQ 0022-2488 10.1063/1.524020
-
(1979)
J. Math. Phys.
, vol.20
, pp. 2573
-
-
Van Vliet, K.M.1
-
28
-
-
36149015040
-
-
PHRVAO 0031-899X 10.1103/PhysRev.79.845
-
H. Fröhlich, Phys. Rev. 79, 845 (1950). PHRVAO 0031-899X 10.1103/PhysRev.79.845
-
(1950)
Phys. Rev.
, vol.79
, pp. 845
-
-
Fröhlich, H.1
-
29
-
-
33645671818
-
-
PRLTAO 0031-9007 10.1103/PhysRevLett.96.136405;
-
G. De Filippis, V. Cataudella, A. S. Mishchenko, C. A. Perroni, and J. T. Devreese, Phys. Rev. Lett. 96, 136405 (2006) PRLTAO 0031-9007 10.1103/PhysRevLett.96.136405;
-
(2006)
Phys. Rev. Lett.
, vol.96
, pp. 136405
-
-
De Filippis, G.1
Cataudella, V.2
Mishchenko, A.S.3
Perroni, C.A.4
Devreese, J.T.5
-
31
-
-
0031996166
-
-
EULEEJ 10.1209/epl/i1998-00148-y 0295-5075
-
G. Iadonisi, V. Cataudella, G. De Filippis, and D. Ninno, Europhys. Lett. 41, 309 (1998). EULEEJ 10.1209/epl/i1998-00148-y 0295-5075
-
(1998)
Europhys. Lett.
, vol.41
, pp. 309
-
-
Iadonisi, G.1
Cataudella, V.2
De Filippis, G.3
Ninno, D.4
-
32
-
-
0010849261
-
-
PHRVAO 0031-899X 10.1103/PhysRev.133.A1070;
-
D. C. Langreth and L. P. Kadanoff, Phys. Rev. 133, A1070 (1964) PHRVAO 0031-899X 10.1103/PhysRev.133.A1070;
-
(1964)
Phys. Rev.
, vol.133
-
-
Langreth, D.C.1
Kadanoff, L.P.2
-
33
-
-
0010918087
-
-
PHRVAO 10.1103/PhysRev.142.366 0031-899X;
-
G. D. Mahan, Phys. Rev. 142, 366 (1966) PHRVAO 10.1103/PhysRev.142.366 0031-899X;
-
(1966)
Phys. Rev.
, vol.142
, pp. 366
-
-
Mahan, G.D.1
-
34
-
-
77952486687
-
-
JUPSAU 10.1143/JPSJ.35.381 0031-9015;
-
Y. Osaka, J. Phys. Soc. Japan 35, 381 (1973) JUPSAU 10.1143/JPSJ.35.381 0031-9015;
-
(1973)
J. Phys. Soc. Japan
, vol.35
, pp. 381
-
-
Osaka, Y.1
-
35
-
-
0001484358
-
-
0556-2805 10.1103/PhysRevB.1.4099
-
K. K. Thornber and R. P. Feynman, Phys. Rev. B 1, 4099 (1970). 0556-2805 10.1103/PhysRevB.1.4099
-
(1970)
Phys. Rev. B
, vol.1
, pp. 4099
-
-
Thornber, K.K.1
Feynman, R.P.2
-
36
-
-
0003374443
-
-
PHRVAO 0031-899X 10.1103/PhysRev.130.1364
-
L. P. Kadanoff, Phys. Rev. 130, 1364 (1963). PHRVAO 0031-899X 10.1103/PhysRev.130.1364
-
(1963)
Phys. Rev.
, vol.130
, pp. 1364
-
-
Kadanoff, L.P.1
-
37
-
-
84894537423
-
-
PLEEE8 1539-3755 10.1103/PhysRevE.89.012124
-
D. Sels and F. Brosens, Phys. Rev. E 89, 012124 (2014). PLEEE8 1539-3755 10.1103/PhysRevE.89.012124
-
(2014)
Phys. Rev. e
, vol.89
, pp. 012124
-
-
Sels, D.1
Brosens, F.2
-
38
-
-
36149006525
-
-
PHRVAO 0031-899X 10.1103/PhysRev.127.1004
-
R. P. Feynman, R. W. Hellwarth, C. K. Iddings, and P. M. Platzman, Phys. Rev. 127, 1004 (1962). PHRVAO 0031-899X 10.1103/PhysRev.127.1004
-
(1962)
Phys. Rev.
, vol.127
, pp. 1004
-
-
Feynman, R.P.1
Hellwarth, R.W.2
Iddings, C.K.3
Platzman, P.M.4
-
39
-
-
0002330589
-
-
PRBMDO 0163-1829 10.1103/PhysRevB.28.6051
-
F. M. Peeters and J. T. Devreese, Phys. Rev. B 28, 6051 (1983). PRBMDO 0163-1829 10.1103/PhysRevB.28.6051
-
(1983)
Phys. Rev. B
, vol.28
, pp. 6051
-
-
Peeters, F.M.1
Devreese, J.T.2
-
40
-
-
0000825552
-
-
1364-5021 10.1098/rspa.1937.0106
-
H. Fröhlich, Proc. R. Soc. Lond. A 160, 230 (1937). 1364-5021 10.1098/rspa.1937.0106
-
(1937)
Proc. R. Soc. Lond. A
, vol.160
, pp. 230
-
-
Fröhlich, H.1
-
41
-
-
9444269581
-
-
We note that within this reference, the equations determining the transport scattering time coincide with Eqs.
-
H. Fröhlich and N. F. Mott, Proc. R. Soc. London A 171, 496 (1939). We note that within this reference, the equations determining the transport scattering time coincide with Eqs. (28) and (29), except for the factor (Equation presented) that is replaced with (Equation presented). Fröhlich and Mott demonstrated, by using the energy conservation, that the factor (Equation presented) is equivalent to the quantity (Equation presented) [(Equation presented) (Equation presented) for one phonon emission (absorption)], where (Equation presented). On the other hand, the inspection of the Boltzmann equation reveals that the contribution (Equation presented) is correct only in the elastic-scattering problems (where (Equation presented) and, in this case, all the approaches provide the same result). We also note that the term (Equation presented) has been neglected by Frohlich in Ref. [30]. Actually it is not clear which is the appropriate factor in the inelastic-scattering problems, and, in general, it is discarded (in this way, transport scattering time and electron lifetime coincide). Then the problem is open and, so far, not solved. This does not allow one to establish which is the correct perturbative limit for the mobility. Within BWFOC, the appropriate factor both in elastic- and inelastic-scattering problems turns out to be (Equation presented). We note, in particular, that the validity of our approach is not related to the nature of the scattering events. 1364-5021 10.1098/rspa.1939.0080
-
(1939)
Proc. R. Soc. London A
, vol.171
, pp. 496
-
-
Fröhlich, H.1
Mott, N.F.2
-
42
-
-
84905386536
-
-
Note the strange fact that in the FHIP [28] treatment, mobility is dominated by phonon emission processes [21].
-
Note the strange fact that in the FHIP [28] treatment, mobility is dominated by phonon emission processes [21].
-
-
-
-
43
-
-
84905405078
-
-
We emphasize that within the SKF, the second vertex correction provides a further factor in Eq. (27) of the order of (Equation presented) [7], in agreement, apart from a numerical factor, with the prediction of WBFOC (we note that WBFOC obtains this result at the lowest order).
-
We emphasize that within the SKF, the second vertex correction provides a further factor in Eq. (27) of the order of (Equation presented) [7], in agreement, apart from a numerical factor, with the prediction of WBFOC (we note that WBFOC obtains this result at the lowest order).
-
-
-
-
44
-
-
0015160178
-
-
JLTPAC 0022-2291 10.1007/BF00628186
-
W. Götze and P. Wölfle, J. Low Temp. Phys. 5, 575 (1971). JLTPAC 0022-2291 10.1007/BF00628186
-
(1971)
J. Low Temp. Phys.
, vol.5
, pp. 575
-
-
Götze, W.1
Wölfle, P.2
|