메뉴 건너뛰기




Volumn 138, Issue , 2014, Pages 41-47

Hot PLS-a framework for hierarchically ordered taxonomic classification by partial least squares

Author keywords

Classification; Fixed hierarchy; Local modelling; Partial least squares; Replicate measurements; Taxonomy

Indexed keywords

ARTICLE; CALIBRATION; CLASSIFICATION ALGORITHM; DISCRIMINANT ANALYSIS; INFORMATION SYSTEM; PARTIAL LEAST SQUARES REGRESSION; PHYLOGENETIC TREE; PRIORITY JOURNAL; PROCESS DEVELOPMENT; PROCESS MODEL; STATISTICAL MODEL; SUPPORT VECTOR MACHINE; TAXONOMIC IDENTIFICATION; TAXONOMIC RANK; LINEAR SYSTEM; MATHEMATICAL MODEL; PROBABILITY; PROCESS OPTIMIZATION; QUALITY CONTROL; SENSITIVITY AND SPECIFICITY; VALIDATION PROCESS;

EID: 84905275094     PISSN: 01697439     EISSN: 18733239     Source Type: Journal    
DOI: 10.1016/j.chemolab.2014.07.010     Document Type: Article
Times cited : (15)

References (24)
  • 1
    • 0002555784 scopus 로고
    • The multivariate calibration problem in chemistry solved by the PLS method
    • Springer Verlag, Heideberg, A. Ruhe, B. Kågström (Eds.)
    • Wold S., Martens H., Wold H. The multivariate calibration problem in chemistry solved by the PLS method. Lecture Notes in Mathematics; Proc. Conf. Matrix Pencils 1983, 286-293. Springer Verlag, Heideberg. A. Ruhe, B. Kågström (Eds.).
    • (1983) Lecture Notes in Mathematics; Proc. Conf. Matrix Pencils , pp. 286-293
    • Wold, S.1    Martens, H.2    Wold, H.3
  • 2
    • 70349588017 scopus 로고    scopus 로고
    • Canonical partial least squares-a unified PLS approach to classification and regression problems
    • Indahl U.G., Liland K.H., Naes T. Canonical partial least squares-a unified PLS approach to classification and regression problems. J. Chemom. 2009, 23:495-504.
    • (2009) J. Chemom. , vol.23 , pp. 495-504
    • Indahl, U.G.1    Liland, K.H.2    Naes, T.3
  • 3
    • 84897618381 scopus 로고    scopus 로고
    • The geometry of PLS1 explained properly: 10 key notes on mathematical properties of and some alternative algorithmic approaches to PLS1 modelling
    • Indahl U.G. The geometry of PLS1 explained properly: 10 key notes on mathematical properties of and some alternative algorithmic approaches to PLS1 modelling. J. Chemom. 2014, 28:168-180.
    • (2014) J. Chemom. , vol.28 , pp. 168-180
    • Indahl, U.G.1
  • 4
    • 10144239028 scopus 로고    scopus 로고
    • Discrimination on latent components with respect to patterns. Application to multicollinear data
    • Nocairi H., Qannari E.M., Vigneau E., Bertrand D. Discrimination on latent components with respect to patterns. Application to multicollinear data. Comput. Stat. Data Anal. 2005, 48:139-147.
    • (2005) Comput. Stat. Data Anal. , vol.48 , pp. 139-147
    • Nocairi, H.1    Qannari, E.M.2    Vigneau, E.3    Bertrand, D.4
  • 5
    • 0037350844 scopus 로고    scopus 로고
    • Partial least squares for discrimination
    • Barker M., Rayens W. Partial least squares for discrimination. J. Chemom. 2003, 17:166-173.
    • (2003) J. Chemom. , vol.17 , pp. 166-173
    • Barker, M.1    Rayens, W.2
  • 6
    • 38949089692 scopus 로고    scopus 로고
    • From dummy regression to prior probabilities in PLS-DA
    • Indahl U.G., Martens H., Naes T. From dummy regression to prior probabilities in PLS-DA. J. Chemom. 2007, 21:529-536.
    • (2007) J. Chemom. , vol.21 , pp. 529-536
    • Indahl, U.G.1    Martens, H.2    Naes, T.3
  • 7
    • 0000736392 scopus 로고    scopus 로고
    • Analysis of multiblock and hierarchical PCA and PLS models
    • Westerhuis J.A., Kourti T., MacGregor J.F. Analysis of multiblock and hierarchical PCA and PLS models. J. Chemom. 1998, 12:301-321.
    • (1998) J. Chemom. , vol.12 , pp. 301-321
    • Westerhuis, J.A.1    Kourti, T.2    MacGregor, J.F.3
  • 8
    • 79957636952 scopus 로고    scopus 로고
    • Hierarchical Cluster-based Partial Least Squares Regression (HC-PLSR) is an efficient tool for metamodelling of nonlinear dynamic models
    • Tondel K., Indahl U.G., Gjuvsland A.B., Vik J.O., Hunter P., Omholt S.W., Martens H. Hierarchical Cluster-based Partial Least Squares Regression (HC-PLSR) is an efficient tool for metamodelling of nonlinear dynamic models. BMC Syst. Biol. 2011, 5.
    • (2011) BMC Syst. Biol. , vol.5
    • Tondel, K.1    Indahl, U.G.2    Gjuvsland, A.B.3    Vik, J.O.4    Hunter, P.5    Omholt, S.W.6    Martens, H.7
  • 9
    • 0028466750 scopus 로고
    • Advanced supervised learning in multilayer perceptrons-from backpropagation to adaptive learning algorithms
    • Riedmiller M. Advanced supervised learning in multilayer perceptrons-from backpropagation to adaptive learning algorithms. Comp. Stand. Inter. 1994, 16:265-278.
    • (1994) Comp. Stand. Inter. , vol.16 , pp. 265-278
    • Riedmiller, M.1
  • 11
    • 0027167622 scopus 로고
    • Linear discriminant hierarchical-clustering-a modeling and cross-validatable divisive clustering method
    • Marengo E., Todeschini R. Linear discriminant hierarchical-clustering-a modeling and cross-validatable divisive clustering method. Chemom. Intell. Lab. Syst. 1993, 19:43-51.
    • (1993) Chemom. Intell. Lab. Syst. , vol.19 , pp. 43-51
    • Marengo, E.1    Todeschini, R.2
  • 13
    • 0035478854 scopus 로고    scopus 로고
    • Random forests
    • Breiman L. Random forests. Mach. Learn. 2001, 45:5-32.
    • (2001) Mach. Learn. , vol.45 , pp. 5-32
    • Breiman, L.1
  • 14
    • 58549098908 scopus 로고    scopus 로고
    • Powered partial least squares discriminant analysis
    • Liland K.H., Indahl U.G. Powered partial least squares discriminant analysis. J. Chemom. 2009, 23:7-18.
    • (2009) J. Chemom. , vol.23 , pp. 7-18
    • Liland, K.H.1    Indahl, U.G.2
  • 15
    • 84873660712 scopus 로고    scopus 로고
    • An extension of PPLS-DA for classification and comparison to ordinary PLS-DA
    • Telaar A., Liland K.H., Repsilber D., Nurnberg G. An extension of PPLS-DA for classification and comparison to ordinary PLS-DA. PLoS One 2013, 8.
    • (2013) PLoS One , vol.8
    • Telaar, A.1    Liland, K.H.2    Repsilber, D.3    Nurnberg, G.4
  • 16
    • 0000764772 scopus 로고
    • The use of multiple measurements in taxonomic problems
    • Fisher R.A. The use of multiple measurements in taxonomic problems. Ann. Hum. Genet. 1936, 7:179-188.
    • (1936) Ann. Hum. Genet. , vol.7 , pp. 179-188
    • Fisher, R.A.1
  • 17
    • 0001565436 scopus 로고
    • The utilization of multiple measurements in problems of biological classification
    • Rao R.C. The utilization of multiple measurements in problems of biological classification. J. R. Stat. Soc. Ser. B 1948, 10:159-203.
    • (1948) J. R. Stat. Soc. Ser. B , vol.10 , pp. 159-203
    • Rao, R.C.1
  • 18
    • 0042553279 scopus 로고
    • Smoothing+differentiation of data by simplified least squares procedures
    • Savitzky A., Golay M.J.E. Smoothing+differentiation of data by simplified least squares procedures. Anal. Chem. 1964, 36:1627-1639.
    • (1964) Anal. Chem. , vol.36 , pp. 1627-1639
    • Savitzky, A.1    Golay, M.J.E.2
  • 19
    • 0026351585 scopus 로고
    • Extended multiplicative signal correction and spectral interference subtraction-new preprocessing methods for near-infrared spectroscopy
    • Martens H., Stark E. Extended multiplicative signal correction and spectral interference subtraction-new preprocessing methods for near-infrared spectroscopy. J. Pharm. Biomed. Anal. 1991, 9:625-635.
    • (1991) J. Pharm. Biomed. Anal. , vol.9 , pp. 625-635
    • Martens, H.1    Stark, E.2
  • 20
    • 62849087078 scopus 로고    scopus 로고
    • Reducing inter-replicate variation in fourier transform infrared spectroscopy by extended multiplicative signal correction
    • Kohler A., Bocker U., Warringer J., Blomberg A., Omholt S.W., Stark E., Martens H. Reducing inter-replicate variation in fourier transform infrared spectroscopy by extended multiplicative signal correction. Appl. Spectrosc. 2009, 63:296-305.
    • (2009) Appl. Spectrosc. , vol.63 , pp. 296-305
    • Kohler, A.1    Bocker, U.2    Warringer, J.3    Blomberg, A.4    Omholt, S.W.5    Stark, E.6    Martens, H.7
  • 21
    • 84905267514 scopus 로고    scopus 로고
    • MATLAB, The MathWorks Inc, Natick, Massachusetts
    • MATLAB, The MathWorks Inc, Natick, Massachusetts, 2014.
    • (2014)
  • 22
    • 84876337388 scopus 로고    scopus 로고
    • Multi-block regression based on combinations of orthogonalisation, PLS-regression and canonical correlation analysis
    • Naes T., Tomic O., Afseth N.K., Segtnan V., Mage I. Multi-block regression based on combinations of orthogonalisation, PLS-regression and canonical correlation analysis. Chemom. Intell. Lab. Syst. 2013, 124:32-42.
    • (2013) Chemom. Intell. Lab. Syst. , vol.124 , pp. 32-42
    • Naes, T.1    Tomic, O.2    Afseth, N.K.3    Segtnan, V.4    Mage, I.5
  • 23
    • 84874320729 scopus 로고    scopus 로고
    • Distribution based truncation for variable selection in subspace methods for multivariate regression
    • Liland K.H., Hoy M., Martens H., Saebo S. Distribution based truncation for variable selection in subspace methods for multivariate regression. Chemom. Intell. Lab. Syst. 2013, 122:103-111.
    • (2013) Chemom. Intell. Lab. Syst. , vol.122 , pp. 103-111
    • Liland, K.H.1    Hoy, M.2    Martens, H.3    Saebo, S.4
  • 24
    • 53649086225 scopus 로고    scopus 로고
    • ST-PLS: a multi-directional nearest shrunken centroid type classi er via PLS
    • Saebo S., Almoy T., Aaroe J., Aastveit A.H. ST-PLS: a multi-directional nearest shrunken centroid type classi er via PLS. J. Chemom. 2008, 22:54-62.
    • (2008) J. Chemom. , vol.22 , pp. 54-62
    • Saebo, S.1    Almoy, T.2    Aaroe, J.3    Aastveit, A.H.4


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.