-
1
-
-
23944449192
-
Sobolev spaces
-
Second edition, Elsevier/Academic Press, Amsterdam, Zbl1098.46001 MR2424078
-
ADAMS, R. A. & FOURNIER, J. J. F., Sobolev spaces, Second edition, Pure and Applied Mathematics (Amsterdam), 140. Elsevier/Academic Press, Amsterdam, 2003. Zbl1098.46001 MR2424078
-
(2003)
Pure and Applied Mathematics (Amsterdam)
, vol.140
-
-
Adams, R.A.1
Fournier, J.J.F.2
-
2
-
-
84968521876
-
Symmetric decreasing rearrangement is sometimes continuous
-
Zbl0688.46014 MR1002633
-
ALMGREN, F. J. JR. & LIEB, E. H., Symmetric decreasing rearrangement is sometimes continuous, J. Amer. Math. Soc. 2 (1989), 683-773. Zbl0688.46014 MR1002633
-
(1989)
J. Amer. Math. Soc.
, vol.2
, pp. 683-773
-
-
Almgren, F.J.1
Lieb, E.H.2
-
3
-
-
55549132662
-
Uniqueness of the Cheeger set of a convex body
-
Zbl1167.52005 MR2468216
-
ALTER, F. & CASELLES, V., Uniqueness of the Cheeger set of a convex body, Nonlinear Anal. 70 (2009), 32-44. Zbl1167.52005 MR2468216
-
(2009)
Nonlinear Anal.
, vol.70
, pp. 32-44
-
-
Alter, F.1
Caselles, V.2
-
4
-
-
78751574089
-
Gamma-convergence of nonlocal perimeter functionals
-
Zbl1207.49051 MR2765717
-
AMBROSIO, L., DE PHILIPPIS, G. & MARTINAZZI, L., Gamma-convergence of nonlocal perimeter functionals, Manuscripta Math. 134 (2011), 377-403. Zbl1207.49051 MR2765717
-
(2011)
Manuscripta Math.
, vol.134
, pp. 377-403
-
-
Ambrosio, L.1
De Philippis, G.2
Martinazzi, L.3
-
5
-
-
0003282839
-
Functions of Bounded Variation and Free Discontinuity Problems
-
The Clarendon Press Oxford University Press, New York Zbl0957.49001 MR1857292
-
AMBROSIO, L., FUSCO, N. & PALLARA, D., Functions of Bounded Variation and Free Discontinuity Problems. Oxford Mathematical Monographs. The Clarendon Press Oxford University Press, New York (2000). Zbl0957.49001 MR1857292
-
(2000)
Oxford Mathematical Monographs
-
-
Ambrosio, L.1
Fusco, N.2
Pallara, D.3
-
6
-
-
77954614758
-
Nonlocal minimal surfaces
-
MR2675483
-
CAFFARELLI, L., ROQUEJOFFRE, J.-M. & SAVIN, O., Nonlocal minimal surfaces, Comm. Pure Appl. Math. 63 (2010), 1111-1144. MR2675483
-
(2010)
Comm. Pure Appl. Math.
, vol.63
, pp. 1111-1144
-
-
Caffarelli, L.1
Roquejoffre, J.-M.2
Savin, O.3
-
8
-
-
34547108563
-
On a weighted total variation minimization problem
-
Zbl1120.49011 MR2345913
-
CARLIER, G. & COMTE, M., On a weighted total variation minimization problem, J. Func. Anal. 250 (2007), 214-226. Zbl1120.49011 MR2345913
-
(2007)
J. Func. Anal.
, vol.250
, pp. 214-226
-
-
Carlier, G.1
Comte, M.2
-
9
-
-
46449085369
-
Uniqueness of the Cheeger set of a convex body
-
Zbl1221.35171 MR2358032
-
CASELLES, V., CHAMBOLLE, A. & NOVAGA, M., Uniqueness of the Cheeger set of a convex body, Pacific J. Math. 232 (2007), 77-90. Zbl1221.35171 MR2358032
-
(2007)
Pacific J. Math.
, vol.232
, pp. 77-90
-
-
Caselles, V.1
Chambolle, A.2
Novaga, M.3
-
10
-
-
20344362744
-
A lower bound for the smallest eigenvalue of the Laplacian
-
Papers dedicated to Salomon Bochner, Princeton Univ. Press, Princeton, N. J., Zbl0212.44903 MR0402831
-
CHEEGER, J., A lower bound for the smallest eigenvalue of the Laplacian, Problems in analysis (Papers dedicated to Salomon Bochner, 1969), Princeton Univ. Press, Princeton, N. J., 1970, pp. 195-199. Zbl0212.44903 MR0402831
-
(1969)
Problems in Analysis
, pp. 195-199
-
-
Cheeger, J.1
-
11
-
-
0036978827
-
On an open question about functions of bounded variation
-
Zbl1047.46025 MR1942130
-
DÁVILA, J., On an open question about functions of bounded variation, Calc. Var. Partial Differential Equations 15 (2002), 519-527. Zbl1047.46025 MR1942130
-
(2002)
Calc. Var. Partial Differential Equations
, vol.15
, pp. 519-527
-
-
Dávila, J.1
-
12
-
-
84863469913
-
Hitchhiker's guide to the fractional Sobolev spaces
-
Zbl1252.46023 MR2944369
-
DI NEZZA, E., PALATUCCI, G. & VALDINOCI, E., Hitchhiker's guide to the fractional Sobolev spaces, Bull. Sci. Math. 136 (2012), 521-573. Zbl1252.46023 MR2944369
-
(2012)
Bull. Sci. Math.
, vol.136
, pp. 521-573
-
-
Di Nezza, E.1
Palatucci, G.2
Valdinoci, E.3
-
13
-
-
10244239422
-
A fractional order Hardy inequality
-
Zbl1068.26014 MR2085428
-
DYDA, B., A fractional order Hardy inequality, Illinois J. Math. 48 (2004), 575-588. Zbl1068.26014 MR2085428
-
(2004)
Illinois J. Math.
, vol.48
, pp. 575-588
-
-
Dyda, B.1
-
15
-
-
55549087886
-
Non-linear ground state representations and sharp Hardy inequalities
-
Zbl1189.26031 MR2469027
-
FRANK, R. L. & SEIRINGER, R., Non-linear ground state representations and sharp Hardy inequalities, J. Funct. Anal. 255 (2008), 3407-3430. Zbl1189.26031 MR2469027
-
(2008)
J. Funct. Anal.
, vol.255
, pp. 3407-3430
-
-
Frank, R.L.1
Seiringer, R.2
-
16
-
-
84905012689
-
Fractional p-eigenvalues
-
to appear on available at
-
FRANZINA, G. & PALATUCCI, G., Fractional p-eigenvalues, to appear on Riv. Mat. Univ. Parma (2013), available at http://cvgmt.sns.it/paper/2168/
-
(2013)
Riv. Mat. Univ. Parma
-
-
Franzina, G.1
Palatucci, G.2
-
17
-
-
84940423705
-
Geometric analysis of fractional phase transition interfaces
-
Geometric Properties for Parabolic and Elliptic PDEs, Zbl06192744 MR3050230
-
FRANZINA, G. & VALDINOCI, E., Geometric analysis of fractional phase transition interfaces, in Geometric Properties for Parabolic and Elliptic PDEs, Springer INdAM Series Volume 2, 2013, 117-130. Zbl06192744 MR3050230
-
(2013)
Springer INdAM Series
, vol.2
, pp. 117-130
-
-
Franzina, G.1
Valdinoci, E.2
-
18
-
-
85068234417
-
Isoperimetric estimates for the first eigenvalue of the p -Laplace operator and the Cheeger constant
-
Zbl1105.35029 MR2062882
-
FRIDMAN, V. & KAWOHL, B., Isoperimetric estimates for the first eigenvalue of the p -Laplace operator and the Cheeger constant, Comment. Math. Univ. Carolinae 44 (2003), 659-667. Zbl1105.35029 MR2062882
-
(2003)
Comment. Math. Univ. Carolinae
, vol.44
, pp. 659-667
-
-
Fridman, V.1
Kawohl, B.2
-
19
-
-
79955595106
-
A quantitative isoperimetric inequality for fractional perimeters
-
Zbl1228.46030 MR2799577
-
FUSCO, N., MILLOT, V. & MORINI, M., A quantitative isoperimetric inequality for fractional perimeters, J. Funct. Anal. 261 (2011), 697-715. Zbl1228.46030 MR2799577
-
(2011)
J. Funct. Anal.
, vol.261
, pp. 697-715
-
-
Fusco, N.1
Millot, V.2
Morini, M.3
-
20
-
-
0842305554
-
-
World Scientific Publishing Co., Inc., River Edge, NJ, Zbl1028.49001 MR1962933
-
GIUSTI, E., Direct Methods in the Calculus of Variations, World Scientific Publishing Co., Inc., River Edge, NJ, 2003. Zbl1028.49001 MR1962933
-
(2003)
Direct Methods in the Calculus of Variations
-
-
Giusti, E.1
-
21
-
-
33745830836
-
The first eigenvalue of the Laplacian, isoperimetric constants, and the max flow min cut theorem
-
Zbl1105.35062 MR2246409
-
GRIESER, D., The first eigenvalue of the Laplacian, isoperimetric constants, and the max flow min cut theorem, Arch. Math. (Basel) 87 (2006), 75-85. Zbl1105.35062 MR2246409
-
(2006)
Arch. Math. (Basel)
, vol.87
, pp. 75-85
-
-
Grieser, D.1
-
22
-
-
34250215696
-
Characterization of Cheeger sets for convex subsets of the plane
-
Zbl1133.52002 MR2233727
-
KAWOHL, B. & LACHAND-ROBERT, T., Characterization of Cheeger sets for convex subsets of the plane, Pacific J. Math. 225 (2006), 103-118. Zbl1133.52002 MR2233727
-
(2006)
Pacific J. Math.
, vol.225
, pp. 103-118
-
-
Kawohl, B.1
Lachand-Robert, T.2
-
23
-
-
84863003413
-
The Cheeger constant of curved strips
-
Zbl1247.28003 MR2900018
-
KREJČIŘÍK, D. & PRATELLI, A., The Cheeger constant of curved strips, Pacific J. Math. 254 (2011), 309-333. Zbl1247.28003 MR2900018
-
(2011)
Pacific J. Math.
, vol.254
, pp. 309-333
-
-
Krejčiřík, D.1
Pratelli, A.2
-
24
-
-
80052491311
-
Characterization of Sobolev and BV spaces
-
Zbl1236.46032 MR2832587
-
LEONI, G. & SPECTOR, D., Characterization of Sobolev and BV spaces, J. Func. Anal. 261 (2011), 2926-2958 Zbl1236.46032 MR2832587
-
(2011)
J. Func. Anal.
, vol.261
, pp. 2926-2958
-
-
Leoni, G.1
Spector, D.2
-
26
-
-
84891902305
-
Convergence of the eigenvalues of the p-Laplace operator as p goes to 1
-
Zbl1282.35267 MR3148132
-
LITTIG, S. & SCHURICHT, F., Convergence of the eigenvalues of the p-Laplace operator as p goes to 1, Calc. Var. Partial Differential Equations 40 (2014), 707-727. Zbl1282.35267 MR3148132
-
(2014)
Calc. Var. Partial Differential Equations
, vol.40
, pp. 707-727
-
-
Littig, S.1
Schuricht, F.2
-
27
-
-
84893314394
-
Anisotropic fractional perimeters
-
Zbl06282558 MR3161386
-
LUDWIG, M., Anisotropic fractional perimeters, J. Differ. Geom. 96 (2014), 77-93 . Zbl06282558 MR3161386
-
(2014)
J. Differ. Geom.
, vol.96
, pp. 77-93
-
-
Ludwig, M.1
-
28
-
-
36149039841
-
An inverse problem for the Helmholtz equation
-
Zbl0608.35076 MR0824135
-
MAGNANINI, R.&PAPI, G.,An inverse problem for the Helmholtz equation, Inverse Problems 1 (1985), 357-370. Zbl0608.35076 MR0824135
-
(1985)
Inverse Problems
, vol.1
, pp. 357-370
-
-
Magnanini, R.1
Papi, G.2
-
29
-
-
0003796632
-
Sobolev spaces
-
Springer-Verlag, Berlin, Zbl0692.46023 MR0817985
-
MAZ'JA, V. G., Sobolev spaces, Springer Series in Soviet Mathematics, Springer-Verlag, Berlin, 1985. Zbl0692.46023 MR0817985
-
(1985)
Springer Series in Soviet Mathematics
-
-
Maz'ja, V.G.1
-
30
-
-
84907278287
-
An introduction to the Cheeger problem
-
MR2832554
-
PARINI, E., An introduction to the Cheeger problem, Surv. Math. Appl. 6 (2011), 9-21. MR2832554
-
(2011)
Surv. Math. Appl.
, vol.6
, pp. 9-21
-
-
Parini, E.1
-
31
-
-
84881611836
-
Regularity of nonlocal minimal cones in dimension 2
-
Zbl1275.35065 MR3090533
-
SAVIN, O. & VALDINOCI, E., Regularity of nonlocal minimal cones in dimension 2, Calc. Var. Partial Differential Equations 48 (2013), 33-39. Zbl1275.35065 MR3090533
-
(2013)
Calc. Var. Partial Differential Equations
, vol.48
, pp. 33-39
-
-
Savin, O.1
Valdinoci, E.2
-
32
-
-
0020764041
-
Maximal flow through a domain
-
Zbl0513. 90026 MR0700642
-
STRANG, G., Maximal flow through a domain, Math. Programming 26 (1983), 123-143. Zbl0513. 90026 MR0700642
-
(1983)
Math. Programming
, vol.26
, pp. 123-143
-
-
Strang, G.1
-
33
-
-
33748354629
-
Generalized coarea formula and fractal sets
-
Zbl0736.49030 MR1111612
-
VISINTIN, A., Generalized coarea formula and fractal sets, Japan J. Indust. Appl. Math. 8 (1991), 175-201. Zbl0736.49030 MR1111612
-
(1991)
Japan J. Indust. Appl. Math.
, vol.8
, pp. 175-201
-
-
Visintin, A.1
|