-
1
-
-
81155160141
-
Technology behind commercial devices for blood glucose monitoring in diabetes management: A review
-
S.K. Vashist, D. Zheng, K. Al-Rubeaan, J.H.T. Luong, and F.S. Sheu Technology behind commercial devices for blood glucose monitoring in diabetes management: a review Anal. Chim. Acta 703 2011 124 136
-
(2011)
Anal. Chim. Acta
, vol.703
, pp. 124-136
-
-
Vashist, S.K.1
Zheng, D.2
Al-Rubeaan, K.3
Luong, J.H.T.4
Sheu, F.S.5
-
2
-
-
0027370108
-
The Diabetes Control and Complications Trial Research Group, the effect of intensive treatment of diabetes on the development and progression of long-term complications in insulin-dependent diabetes mellitus
-
The Diabetes Control and Complications Trial Research Group, The effect of intensive treatment of diabetes on the development and progression of long-term complications in insulin-dependent diabetes mellitus, N. Engl. J. Med. 329 (1993) 977-986.
-
(1993)
N. Engl. J. Med.
, vol.329
, pp. 977-986
-
-
-
3
-
-
77649267387
-
Prevalence of diabetes and high risk for diabetes using A1C criteria in the U.S. Population in 1988-2006
-
C.C. Cowie, K.F. Rust, D.D. Byrd-Holt, E.W. Gregg, E.S. Ford, L.S. Geiss, K.E. Bainbridge, and J.E. Fradkin Prevalence of diabetes and high risk for diabetes using A1C criteria in the U.S. population in 1988-2006 Diabetes Care 33 2010 562 568
-
(2010)
Diabetes Care
, vol.33
, pp. 562-568
-
-
Cowie, C.C.1
Rust, K.F.2
Byrd-Holt, D.D.3
Gregg, E.W.4
Ford, E.S.5
Geiss, L.S.6
Bainbridge, K.E.7
Fradkin, J.E.8
-
4
-
-
73749083481
-
Global estimates of the prevalence of diabetes for 2010 and 2030
-
J.E. Shaw, R.A. Sicree, and P.Z. Zimmet Global estimates of the prevalence of diabetes for 2010 and 2030 Diabetes Res. Clin. Pract. 87 2010 4 14
-
(2010)
Diabetes Res. Clin. Pract.
, vol.87
, pp. 4-14
-
-
Shaw, J.E.1
Sicree, R.A.2
Zimmet, P.Z.3
-
5
-
-
84875795873
-
Nanotechnology in glucose monitoring: Advances and challenges in the last 10 years
-
V. Scognamiglio Nanotechnology in glucose monitoring: advances and challenges in the last 10 years Biosens. Bioelectron. 47 2013 12 25
-
(2013)
Biosens. Bioelectron.
, vol.47
, pp. 12-25
-
-
Scognamiglio, V.1
-
6
-
-
33845341470
-
Impact of recent increase in incidence on future diabetes burden
-
V.K.M. Narayan, J.P. Boyle, L.S. Geiss, J.B. Saaddine, and T.J. Thompson Impact of recent increase in incidence on future diabetes burden Diabetes Care 29 2006 2114 2116
-
(2006)
Diabetes Care
, vol.29
, pp. 2114-2116
-
-
Narayan, V.K.M.1
Boyle, J.P.2
Geiss, L.S.3
Saaddine, J.B.4
Thompson, T.J.5
-
7
-
-
77954544247
-
Highly sensitive and selective glucose biosensing at carbon paste electrodes modified with electrogenerated magnetite nanoparticles and glucose oxidase
-
F.N. Comba, M.D. Rubianes, L. Cabrera, S. Gutierrez, P. Herrasti, and G.A. Rivas Highly sensitive and selective glucose biosensing at carbon paste electrodes modified with electrogenerated magnetite nanoparticles and glucose oxidase Electroanalysis 22 2010 1566 1572
-
(2010)
Electroanalysis
, vol.22
, pp. 1566-1572
-
-
Comba, F.N.1
Rubianes, M.D.2
Cabrera, L.3
Gutierrez, S.4
Herrasti, P.5
Rivas, G.A.6
-
8
-
-
84868147313
-
Highly selective wide linear-range detecting glucose biosensors based on aspect-ratio controlled ZnO nanorods directly grown on electrodes
-
R. Ahmad, N. Tripathy, J.H. Kim, and Y.B. Hahn Highly selective wide linear-range detecting glucose biosensors based on aspect-ratio controlled ZnO nanorods directly grown on electrodes Sens. Actuator B: Chem. 174 2012 195 201
-
(2012)
Sens. Actuator B: Chem.
, vol.174
, pp. 195-201
-
-
Ahmad, R.1
Tripathy, N.2
Kim, J.H.3
Hahn, Y.B.4
-
9
-
-
49649129614
-
2 as enzyme immobilization host for amperometric glucose biosensor construction
-
2 as enzyme immobilization host for amperometric glucose biosensor construction Electrochem. Commun. 10 2008 1318 1321
-
(2008)
Electrochem. Commun.
, vol.10
, pp. 1318-1321
-
-
Yu, J.1
Zhao, T.2
Zeng, B.3
-
10
-
-
84866887113
-
Chemical and biological sensors based on metal oxide nanostructures
-
Y.B. Hahn, R. Ahmad, and N. Tripathy Chemical and biological sensors based on metal oxide nanostructures Chem. Commun. 48 2012 10369 10385
-
(2012)
Chem. Commun.
, vol.48
, pp. 10369-10385
-
-
Hahn, Y.B.1
Ahmad, R.2
Tripathy, N.3
-
11
-
-
58749108442
-
Enzymatic glucose biosensor based on flower-shaped copper oxide nanostructures composed of thin nanosheets
-
A. Umar, M.M. Rahman, A. Al-Hajry, and Y.B. Hahn Enzymatic glucose biosensor based on flower-shaped copper oxide nanostructures composed of thin nanosheets Electrochem. Commun. 11 2009 278 281
-
(2009)
Electrochem. Commun.
, vol.11
, pp. 278-281
-
-
Umar, A.1
Rahman, M.M.2
Al-Hajry, A.3
Hahn, Y.B.4
-
12
-
-
29944443113
-
Electrochemical non-enzymatic glucose sensors
-
S. Park, H. Boo, and T.D. Chung Electrochemical non-enzymatic glucose sensors Anal. Chim. Acta 556 2006 46 57
-
(2006)
Anal. Chim. Acta
, vol.556
, pp. 46-57
-
-
Park, S.1
Boo, H.2
Chung, T.D.3
-
13
-
-
55849150929
-
CuO nanospheres based nonenzymatic glucose sensor
-
E. Reitz, W. Jia, M. Gentile, Y. Wang, and Y. Lei CuO nanospheres based nonenzymatic glucose sensor Electroanalysis 20 2008 2482 2486
-
(2008)
Electroanalysis
, vol.20
, pp. 2482-2486
-
-
Reitz, E.1
Jia, W.2
Gentile, M.3
Wang, Y.4
Lei, Y.5
-
14
-
-
67649781687
-
MgO polyhedral nanocages and nanocrystals based glucose biosensor
-
A. Umar, M.M. Rahman, and Y.B. Hahn MgO polyhedral nanocages and nanocrystals based glucose biosensor Electrochem. Commun. 11 2009 1353 1357
-
(2009)
Electrochem. Commun.
, vol.11
, pp. 1353-1357
-
-
Umar, A.1
Rahman, M.M.2
Hahn, Y.B.3
-
15
-
-
84875762344
-
Highly sensitive and selective nonenzymatic detection of glucose using three-dimensional porous nickel nanostructures
-
X. Niu, M. Lan, H. Zhao, and C. Chen Highly sensitive and selective nonenzymatic detection of glucose using three-dimensional porous nickel nanostructures Anal. Chem. 85 2013 3561 3569
-
(2013)
Anal. Chem.
, vol.85
, pp. 3561-3569
-
-
Niu, X.1
Lan, M.2
Zhao, H.3
Chen, C.4
-
16
-
-
84874943848
-
Ultrasensitive and highly stable nonenzymatic glucose sensor by a CuO/graphene-modified screen-printed carbon electrode integrated with flow-injection analysis
-
C.L. Sun, W.L. Cheng, T.K. Hsu, C.W. Chang, J.L. Chang, and J.M. Zen Ultrasensitive and highly stable nonenzymatic glucose sensor by a CuO/graphene-modified screen-printed carbon electrode integrated with flow-injection analysis Electrochem. Commun. 30 2013 91 94
-
(2013)
Electrochem. Commun.
, vol.30
, pp. 91-94
-
-
Sun, C.L.1
Cheng, W.L.2
Hsu, T.K.3
Chang, C.W.4
Chang, J.L.5
Zen, J.M.6
-
18
-
-
80054981541
-
A self-cleaning nonenzymatic glucose detection system based on titania nanotube arrays modified with platinum nanoparticles
-
Y.Y. Song, Z. Gao, K. Lee, and P. Schmuki A self-cleaning nonenzymatic glucose detection system based on titania nanotube arrays modified with platinum nanoparticles Electrochem. Commun. 13 2011 1217 1220
-
(2011)
Electrochem. Commun.
, vol.13
, pp. 1217-1220
-
-
Song, Y.Y.1
Gao, Z.2
Lee, K.3
Schmuki, P.4
-
20
-
-
81755181847
-
One-step electrochemical synthesis of PtNi nanoparticle-graphene nanocomposites for nonenzymatic amperometric glucose detection
-
H. Gao, F. Xiao, C.B. Ching, and H. Duan One-step electrochemical synthesis of PtNi nanoparticle-graphene nanocomposites for nonenzymatic amperometric glucose detection ACS Appl. Mater. Interfaces 3 2011 3049 3057
-
(2011)
ACS Appl. Mater. Interfaces
, vol.3
, pp. 3049-3057
-
-
Gao, H.1
Xiao, F.2
Ching, C.B.3
Duan, H.4
-
22
-
-
52449112919
-
2O nanocages and nanoframes by particle aggregation and acidic etching
-
2O nanocages and nanoframes by particle aggregation and acidic etching J. Am. Chem. Soc. 130 2008 12815 12820
-
(2008)
J. Am. Chem. Soc.
, vol.130
, pp. 12815-12820
-
-
Kuo, C.H.1
Huang, M.H.2
-
24
-
-
84870199526
-
2O/n-type ZnO nano-heterojunctions with novel photoluminescence properties, enhanced field emission and photocatalytic activities
-
2O/n-type ZnO nano-heterojunctions with novel photoluminescence properties, enhanced field emission and photocatalytic activities Nanoscale 4 2012 7817 7824
-
(2012)
Nanoscale
, vol.4
, pp. 7817-7824
-
-
Wang, Y.1
Li, S.2
Shi, H.3
Yu, K.4
-
25
-
-
77955417917
-
A highly sensitive non-enzymatic glucose sensor based on a simple two-step electrodeposition of cupric oxide (CuO) nanoparticles onto multi-walled carbon nanotube arrays
-
J. Yang, L.C. Jiang, W.D. Zhang, and S. Gunasekaran A highly sensitive non-enzymatic glucose sensor based on a simple two-step electrodeposition of cupric oxide (CuO) nanoparticles onto multi-walled carbon nanotube arrays Talanta 82 2010 25 33
-
(2010)
Talanta
, vol.82
, pp. 25-33
-
-
Yang, J.1
Jiang, L.C.2
Zhang, W.D.3
Gunasekaran, S.4
-
26
-
-
77949486352
-
In situ growth of copper nanoparticles on multiwalled carbon nanotubes and their application as non-enzymatic glucose sensor materials
-
H.X. Wu, W.M. Cao, Y. Li, G. Liu, Y. Wen, H.F. Yang, and S.P. Yang In situ growth of copper nanoparticles on multiwalled carbon nanotubes and their application as non-enzymatic glucose sensor materials Electrochim. Acta 55 2010 3734 3740
-
(2010)
Electrochim. Acta
, vol.55
, pp. 3734-3740
-
-
Wu, H.X.1
Cao, W.M.2
Li, Y.3
Liu, G.4
Wen, Y.5
Yang, H.F.6
Yang, S.P.7
-
27
-
-
84881111037
-
Hierarchical CuO nanoflowers: Water-required synthesis and their application in a nonenzymatic glucose biosensor
-
S. Sun, X. Zhang, Y. Sun, S. Yang, X. Song, and Z. Yang Hierarchical CuO nanoflowers: water-required synthesis and their application in a nonenzymatic glucose biosensor Phys. Chem. Chem. Phys. 15 2013 10904 10913
-
(2013)
Phys. Chem. Chem. Phys.
, vol.15
, pp. 10904-10913
-
-
Sun, S.1
Zhang, X.2
Sun, Y.3
Yang, S.4
Song, X.5
Yang, Z.6
-
29
-
-
77956425700
-
Addition of porous cuprous oxide to a Nafion film strongly improves the performance of a nonenzymatic glucose sensor
-
L. Zhang, Y. Ni, and H. Li Addition of porous cuprous oxide to a Nafion film strongly improves the performance of a nonenzymatic glucose sensor Microchim. Acta 171 2010 103 108
-
(2010)
Microchim. Acta
, vol.171
, pp. 103-108
-
-
Zhang, L.1
Ni, Y.2
Li, H.3
-
31
-
-
79952817563
-
2O/carbon Vulcan XC-72 as non-enzymatic sensor for glucose determination
-
2O/carbon Vulcan XC-72 as non-enzymatic sensor for glucose determination Biosens. Bioelectron. 26 2011 3542 3548
-
(2011)
Biosens. Bioelectron.
, vol.26
, pp. 3542-3548
-
-
El Khatib, K.M.1
Abdel Hameed, R.M.2
-
34
-
-
84875240263
-
2O nanocubes: Non-enzymatic electrochemical sensors for the detection of glucose and hydrogen peroxide with enhanced stability
-
2O nanocubes: non-enzymatic electrochemical sensors for the detection of glucose and hydrogen peroxide with enhanced stability Biosens. Bioelectron. 45 2013 206 212
-
(2013)
Biosens. Bioelectron.
, vol.45
, pp. 206-212
-
-
Liu, M.1
Liu, R.2
Chen, W.3
-
35
-
-
77952567384
-
Functionalised ZnO-nanorod-based selective electrochemical sensor for intracellular glucose
-
M.H. Asif, S.M.U. Ali, O. Nur, M. Willander, C. Brannmark, P. Stralfors, U.H. Englund, F. Elinder, and B. Danielsson Functionalised ZnO-nanorod-based selective electrochemical sensor for intracellular glucose Biosens. Bioelectron. 25 2010 2205 2211
-
(2010)
Biosens. Bioelectron.
, vol.25
, pp. 2205-2211
-
-
Asif, M.H.1
Ali, S.M.U.2
Nur, O.3
Willander, M.4
Brannmark, C.5
Stralfors, P.6
Englund, U.H.7
Elinder, F.8
Danielsson, B.9
-
36
-
-
79956342645
-
High-performance glucose sensor based on glucose oxidase encapsulated in new synthesized platinum nanoparticles supported on carbon Vulcan/Nafion composite deposited on glassy carbon
-
M. Ammam, and E.B. Easton High-performance glucose sensor based on glucose oxidase encapsulated in new synthesized platinum nanoparticles supported on carbon Vulcan/Nafion composite deposited on glassy carbon Sens. Actuator B: Chem. 155 2011 340 346
-
(2011)
Sens. Actuator B: Chem.
, vol.155
, pp. 340-346
-
-
Ammam, M.1
Easton, E.B.2
-
37
-
-
84887810273
-
Wide linear-range detecting non-enzymatic glucose biosensor based on CuO nanoparticles inkjet-printed on electrodes
-
R. Ahmad, M. Vaseem, N. Tripathy, and Y.B. Hahn Wide linear-range detecting non-enzymatic glucose biosensor based on CuO nanoparticles inkjet-printed on electrodes Anal. Chem. 85 2013 10448 10454
-
(2013)
Anal. Chem.
, vol.85
, pp. 10448-10454
-
-
Ahmad, R.1
Vaseem, M.2
Tripathy, N.3
Hahn, Y.B.4
|