메뉴 건너뛰기




Volumn 44, Issue 10, 2014, Pages 1898-1909

Cost-sensitive AdaBoost algorithm for ordinal regression based on extreme learning machine

Author keywords

Boosting; extreme learning machine; neural networks; ordinal regression; SAMME algorithm

Indexed keywords

BOOSTING; COST-SENSITIVE ADABOOST; EXTREME LEARNING MACHINE; ORDINAL REGRESSION;

EID: 84904892728     PISSN: 21682267     EISSN: None     Source Type: Journal    
DOI: 10.1109/TCYB.2014.2299291     Document Type: Article
Times cited : (67)

References (63)
  • 5
    • 77951766869 scopus 로고    scopus 로고
    • Kernel discriminant learning for ordinal regression
    • Jun.
    • B.-Y. Sun, J. Li, D. D. Wu, X.-M. Zhang, and W.-B. Li, "Kernel discriminant learning for ordinal regression," IEEE Trans. Knowl. Data Eng., vol. 22, no. 6, pp. 906-910, Jun. 2010.
    • (2010) IEEE Trans. Knowl. Data Eng. , vol.22 , Issue.6 , pp. 906-910
    • Sun, B.-Y.1    Li, J.2    Wu, D.D.3    Zhang, X.-M.4    Li, W.-B.5
  • 7
    • 0001306637 scopus 로고
    • Regression models for ordinal data
    • P. McCullagh, "Regression models for ordinal data,"J. Roy. Stat. Soc. Ser. B (Meth.), vol. 42, no. 2, pp. 109-142, 1980.
    • (1980) J. Roy. Stat. Soc. Ser. B (Meth.) , vol.42 , Issue.2 , pp. 109-142
    • McCullagh, P.1
  • 8
    • 0003143574 scopus 로고
    • Regression and ordered categorical variables
    • J. A. Anderson, "Regression and ordered categorical variables," J. Roy. Stat. Soc. Ser. B (Meth.), vol. 46, no. 1, pp. 1-30, 1984.
    • (1984) J. Roy. Stat. Soc. Ser. B (Meth.) , vol.46 , Issue.1 , pp. 1-30
    • Anderson, J.A.1
  • 11
    • 0008371352 scopus 로고    scopus 로고
    • Large margin rank boundaries for ordinal regression
    • A. Smola, P. Bartlett, B. Schölkopf, and D. Schuurmans, Eds. Cambridge, MA, USA: MIT Press
    • R. Herbrich, T. Graepel, and K. Obermayer, "Large margin rank boundaries for ordinal regression," in Advances in Large Margin Classifiers, A. Smola, P. Bartlett, B. Schölkopf, and D. Schuurmans, Eds. Cambridge, MA, USA: MIT Press, 2000, pp. 115-132.
    • (2000) Advances in Large Margin Classifiers , pp. 115-132
    • Herbrich, R.1    Graepel, T.2    Obermayer, K.3
  • 12
    • 33847626350 scopus 로고    scopus 로고
    • Support vector ordinal regression
    • W. Chu and S. S. Keerthi, "Support vector ordinal regression," Neural Comput., vol. 19, no. 3, pp. 792-815, 2007.
    • (2007) Neural Comput. , vol.19 , Issue.3 , pp. 792-815
    • Chu, W.1    Keerthi, S.S.2
  • 13
    • 21844453228 scopus 로고    scopus 로고
    • Gaussian processes for ordinal regression
    • Dec.
    • W. Chu and Z. Ghahramani, "Gaussian processes for ordinal regression," J. Mach. Learn. Res., vol. 6, pp. 1019-1041, Dec. 2005.
    • (2005) J. Mach. Learn. Res. , vol.6 , pp. 1019-1041
    • Chu, W.1    Ghahramani, Z.2
  • 14
    • 77955204500 scopus 로고    scopus 로고
    • Color image watermarking using regularized extreme learning machine
    • W. Deng and L. Chen, "Color image watermarking using regularized extreme learning machine," Neural Netw. World, vol. 20, no. 3, pp. 317-330, 2010.
    • (2010) Neural Netw. World , vol.20 , Issue.3 , pp. 317-330
    • Deng, W.1    Chen, L.2
  • 17
    • 0034315099 scopus 로고    scopus 로고
    • Ensembles with negative correlation learning
    • Nov.
    • Y. Liu, X. Yao, and T. Higuchi, "Ensembles with negative correlation learning," IEEE Trans. Evol. Comput., vol. 4, no. 4, pp. 380-387, Nov. 2000.
    • (2000) IEEE Trans. Evol. Comput. , vol.4 , Issue.4 , pp. 380-387
    • Liu, Y.1    Yao, X.2    Higuchi, T.3
  • 19
    • 78649975675 scopus 로고    scopus 로고
    • Active learning from stream data using optimal weight classifier ensemble
    • Dec.
    • X. Zhu, P. Zhang, X. Lin, and Y. Shi, "Active learning from stream data using optimal weight classifier ensemble," IEEE Trans. Syst., Man, Cybern. B, Cybern., vol. 40, no. 6, pp. 1607-1621, Dec. 2010.
    • (2010) IEEE Trans. Syst., Man, Cybern. B, Cybern. , vol.40 , Issue.6 , pp. 1607-1621
    • Zhu, X.1    Zhang, P.2    Lin, X.3    Shi, Y.4
  • 20
    • 79956208533 scopus 로고    scopus 로고
    • Empirical analysis and evaluation of approximate techniques for pruning regression bagging ensembles
    • D. Hernandez-Lobato, G. Martinez-Muoz, and A. Suarez, "Empirical analysis and evaluation of approximate techniques for pruning regression bagging ensembles," Neurocomputing, vol. 74, nos. 12-13, pp. 2250-2264, 2011.
    • (2011) Neurocomputing , vol.74 , Issue.12-13 , pp. 2250-2264
    • Hernandez-Lobato, D.1    Martinez-Muoz, G.2    Suarez, A.3
  • 21
    • 78649938427 scopus 로고    scopus 로고
    • On the evolutionary design of heterogeneous bagging models
    • A. L. Coelho and D. S. Nascimento, "On the evolutionary design of heterogeneous bagging models," Neurocomputing, vol. 73, nos. 16-18, pp. 3319-3322, 2010.
    • (2010) Neurocomputing , vol.73 , Issue.16-18 , pp. 3319-3322
    • Coelho, A.L.1    Nascimento, D.S.2
  • 22
    • 79954425497 scopus 로고    scopus 로고
    • Online multiple instance boosting for object detection
    • Z. Qi, Y. Xu, L. Wang, and Y. Song, "Online multiple instance boosting for object detection," Neurocomputing, vol. 74, no. 10, pp. 1769-1775, 2011.
    • (2011) Neurocomputing , vol.74 , Issue.10 , pp. 1769-1775
    • Qi, Z.1    Xu, Y.2    Wang, L.3    Song, Y.4
  • 23
    • 84948166287 scopus 로고    scopus 로고
    • A simple approach to ordinal classification
    • E. Frank and M. Hall, "A simple approach to ordinal classification," in Proc. ECML, 2001, pp. 145-156.
    • (2001) Proc. ECML , pp. 145-156
    • Frank, E.1    Hall, M.2
  • 24
    • 84857518260 scopus 로고    scopus 로고
    • An ensemble of weighted support vector machines for ordinal regression
    • W. Waegeman and L. Boullart, "An ensemble of weighted support vector machines for ordinal regression," Int. J. Comput. Syst. Sci. Eng., vol. 3, no. 1, pp. 47-51, 2009.
    • (2009) Int. J. Comput. Syst. Sci. Eng. , vol.3 , Issue.1 , pp. 47-51
    • Waegeman, W.1    Boullart, L.2
  • 26
    • 0000086449 scopus 로고    scopus 로고
    • Negatively correlated neural networks can produce best ensembles
    • Y. Liu and X. Yao, "Negatively correlated neural networks can produce best ensembles," Aust. J. Intell. Inf. Process. Syst., vol. 4, no. 3, pp. 176-185, 1997.
    • (1997) Aust. J. Intell. Inf. Process. Syst. , vol.4 , Issue.3 , pp. 176-185
    • Liu, Y.1    Yao, X.2
  • 27
    • 0033485370 scopus 로고    scopus 로고
    • Ensemble learning via negative correlation
    • Y. Liu and X. Yao, "Ensemble learning via negative correlation," Neural Netw., vol. 12, no. 10, pp. 1399-1404, 1999.
    • (1999) Neural Netw. , vol.12 , Issue.10 , pp. 1399-1404
    • Liu, Y.1    Yao, X.2
  • 28
    • 84899578727 scopus 로고    scopus 로고
    • Projection-based ensemble learning for ordinal regression
    • in press
    • M. Pérez-Ortiz, P. Gutiérrez, and C. Hervás-Martínez, "Projection-based ensemble learning for ordinal regression," IEEE Trans. Cybern., 2014, DOI http://dx.doi.org/10.1109/TCYB.2013.2266336 in press.
    • (2014) IEEE Trans. Cybern.
    • Pérez-Ortiz, M.1    Gutiérrez, P.2    Hervás-Martínez, C.3
  • 29
    • 33750681345 scopus 로고    scopus 로고
    • Large-margin thresholded ensembles for ordinal regression: Theory and practice
    • H.-T. Lin and L. Li, "Large-margin thresholded ensembles for ordinal regression: Theory and practice," in Proc. 17th Int. Conf. Algorithmic Learn. Theory, 2006, pp. 319-333.
    • (2006) Proc. 17th Int. Conf. Algorithmic Learn. Theory , pp. 319-333
    • Lin, H.-T.1    Li, L.2
  • 30
    • 84867570390 scopus 로고    scopus 로고
    • Combining ordinal preferences by boosting
    • H.-T. Lin and L. Li, "Combining ordinal preferences by boosting," in Proc. ECML/PKDD, 2009, pp. 69-83.
    • (2009) Proc. ECML/PKDD , pp. 69-83
    • Lin, H.-T.1    Li, L.2
  • 32
    • 0033281701 scopus 로고    scopus 로고
    • Improved boosting algorithms using confidence-rated predictions
    • R. E. Schapire and Y. Singer, "Improved boosting algorithms using confidence-rated predictions," Mach. Learn., vol. 37, no. 3, pp. 297-336, 1999.
    • (1999) Mach. Learn. , vol.37 , Issue.3 , pp. 297-336
    • Schapire, R.E.1    Singer, Y.2
  • 33
    • 79958178274 scopus 로고    scopus 로고
    • Extreme learning machines: A survey
    • G.-B. Huang, D. Wang, and Y. Lan, "Extreme learning machines: A survey," Int. J. Mach. Learn. Cybern., vol. 2, no. 2, pp. 107-122, 2011.
    • (2011) Int. J. Mach. Learn. Cybern. , vol.2 , Issue.2 , pp. 107-122
    • Huang, G.-B.1    Wang, D.2    Lan, Y.3
  • 34
    • 78149290661 scopus 로고    scopus 로고
    • Dynamic AdaBoost ensemble extreme learning machine
    • G. Wang and P. Li, "Dynamic AdaBoost ensemble extreme learning machine," in Proc. ICACTE, vol. 3. 2010, pp. V3-54-V3-58.
    • (2010) Proc. ICACTE , vol.3 , pp. 54-58
    • Wang, G.1    Li, P.2
  • 35
    • 73849104985 scopus 로고    scopus 로고
    • An ensemble ELM based on modified AdaBoost.RT algorithm for predicting the temperature of molten steel in ladle furnace
    • Jan.
    • H.-X. Tian and Z.-Z. Mao, "An ensemble ELM based on modified AdaBoost.RT algorithm for predicting the temperature of molten steel in ladle furnace," IEEE Trans. Autom. Sci. Eng., vol. 7, no. 1, pp. 73-80, Jan. 2010.
    • (2010) IEEE Trans. Autom. Sci. Eng. , vol.7 , Issue.1 , pp. 73-80
    • Tian, H.-X.1    Mao, Z.-Z.2
  • 36
    • 84865775801 scopus 로고    scopus 로고
    • Dynamic ensemble extreme learning machine based on sample entropy
    • J.-H. Zhai, H.-Y. Xu, and X.-Z. Wang, "Dynamic ensemble extreme learning machine based on sample entropy," Soft Comput., vol. 16, no. 9, pp. 1493-1502, 2012.
    • (2012) Soft Comput. , vol.16 , Issue.9 , pp. 1493-1502
    • Zhai, J.-H.1    Xu, H.-Y.2    Wang, X.-Z.3
  • 37
    • 34547673383 scopus 로고    scopus 로고
    • Cost-sensitive boosting for classification of imbalanced data
    • Y. Sun, M. S. Kamel, A. K. C. Wong, and Y. Wang, "Cost-sensitive boosting for classification of imbalanced data," Pattern Recognit., vol. 40, no. 12, pp. 3358-3378, 2007.
    • (2007) Pattern Recognit. , vol.40 , Issue.12 , pp. 3358-3378
    • Sun, Y.1    Kamel, M.S.2    Wong, A.K.C.3    Wang, Y.4
  • 38
    • 84861176005 scopus 로고    scopus 로고
    • Reduction from cost-sensitive ordinal ranking to weighted binary classification
    • H.-T. Lin and L. Li, "Reduction from cost-sensitive ordinal ranking to weighted binary classification," Neural Comput., vol. 24, no. 5, pp. 1329-1367, 2012.
    • (2012) Neural Comput. , vol.24 , Issue.5 , pp. 1329-1367
    • Lin, H.-T.1    Li, L.2
  • 39
    • 10944272650 scopus 로고    scopus 로고
    • Extreme learning machine: A new learning scheme of feedforward neural networks
    • Jul.
    • G. B. Huang, Q. Y. Zhu, and C. K. Siew, "Extreme learning machine: A new learning scheme of feedforward neural networks," in Proc. IEEE Conf. Int. Conf. Neural Netw., vol. 2. Jul. 2004, pp. 985-990.
    • (2004) Proc. IEEE Conf. Int. Conf. Neural Netw. , vol.2 , pp. 985-990
    • Huang, G.B.1    Zhu, Q.Y.2    Siew, C.K.3
  • 43
    • 33745903481 scopus 로고    scopus 로고
    • Extreme learning machine: Theory and applications
    • G.-B. Huang, Q.-Y. Zhu, and C.-K. Siew, "Extreme learning machine: Theory and applications," Neurocomputing, vol. 70, nos. 1-3, pp. 489-501, 2006.
    • (2006) Neurocomputing , vol.70 , Issue.1-3 , pp. 489-501
    • Huang, G.-B.1    Zhu, Q.-Y.2    Siew, C.-K.3
  • 44
    • 84859007933 scopus 로고    scopus 로고
    • Extreme learning machine for regression and multiclass classification
    • Apr.
    • G.-B. Huang, H. Zhou, X. Ding, and R. Zhang, "Extreme learning machine for regression and multiclass classification," IEEE Trans. Syst., Man, Cybern. B, Cybern., vol. 42, no. 2, pp. 513-529, Apr. 2012.
    • (2012) IEEE Trans. Syst., Man, Cybern. B, Cybern. , vol.42 , Issue.2 , pp. 513-529
    • Huang, G.-B.1    Zhou, H.2    Ding, X.3    Zhang, R.4
  • 46
    • 34547992213 scopus 로고    scopus 로고
    • Multicategory classification using an extreme learning machine for microarray gene expression cancer diagnosis
    • Jul./Sep.
    • R. Zhang, G.-B. Huang, N. Sundararajan, and P. Saratchandran, "Multicategory classification using an extreme learning machine for microarray gene expression cancer diagnosis," IEEE/ACM Trans. Comput. Biol. Bioinform., vol. 4, no. 3, pp. 485-495, Jul./Sep. 2007.
    • (2007) IEEE/ACM Trans. Comput. Biol. Bioinform. , vol.4 , Issue.3 , pp. 485-495
    • Zhang, R.1    Huang, G.-B.2    Sundararajan, N.3    Saratchandran, P.4
  • 47
    • 0032028728 scopus 로고    scopus 로고
    • The sample complexity of pattern classification with neural networks: The size of the weights is more important than the size of the network
    • Mar.
    • P. Bartlett, "The sample complexity of pattern classification with neural networks: The size of the weights is more important than the size of the network," IEEE Trans. Inf. Theory, vol. 44, no. 2, pp. 525-536, Mar. 1998.
    • (1998) IEEE Trans. Inf. Theory , vol.44 , Issue.2 , pp. 525-536
    • Bartlett, P.1
  • 48
    • 77649238806 scopus 로고    scopus 로고
    • Composite function wavelet neural networks with extreme learning machine
    • J. Cao, Z. Lin, and G.-B. Huang, "Composite function wavelet neural networks with extreme learning machine," Neurocomputing, vol. 73, nos. 7-9, pp. 1405-1416, 2010.
    • (2010) Neurocomputing , vol.73 , Issue.7-9 , pp. 1405-1416
    • Cao, J.1    Lin, Z.2    Huang, G.-B.3
  • 49
    • 80955178270 scopus 로고    scopus 로고
    • MELM-GRBF: A modified version of the extreme learning machine for generalized radial basis function neural networks
    • F. Fernández-Navarro, C. Hervás-Martínez, J. Sánchez-Monedero, and P. A. Gutierrez, "MELM-GRBF: A modified version of the extreme learning machine for generalized radial basis function neural networks," Neurocomputing, vol. 74, no. 16, pp. 2502-2510, 2011.
    • (2011) Neurocomputing , vol.74 , Issue.16 , pp. 2502-2510
    • Fernández-Navarro, F.1    Hervás-Martínez, C.2    Sánchez-Monedero, J.3    Gutierrez, P.A.4
  • 50
    • 84942484786 scopus 로고
    • Ridge regression: Biased estimation for nonorthogonal problems
    • A. E. Hoerl and R. W. Kennard, "Ridge regression: Biased estimation for nonorthogonal problems," Technometrics, vol. 12, no. 1, pp. 55-67, 1970.
    • (1970) Technometrics , vol.12 , Issue.1 , pp. 55-67
    • Hoerl, A.E.1    Kennard, R.W.2
  • 52
    • 34547698831 scopus 로고    scopus 로고
    • Learning to classify ordinal data: The data replication method
    • Dec.
    • J. S. Cardoso and J. F. P. da Costa, "Learning to classify ordinal data: The data replication method," J. Mach. Learn. Res., vol. 8, pp. 1393-1429, Dec. 2007.
    • (2007) J. Mach. Learn. Res. , vol.8 , pp. 1393-1429
    • Cardoso, J.S.1    Da Costa, J.F.P.2
  • 55
    • 84878148836 scopus 로고    scopus 로고
    • PCAELM: A robust and pruned extreme learning machine approach based on principal component analysis
    • A. Castaño, F. Fernández-Navarro, and C. Hervás-Martínez, "PCAELM: A robust and pruned extreme learning machine approach based on principal component analysis," Neural Process. Lett., vol. 37, no. 3, pp. 377-392, 2013.
    • (2013) Neural Process. Lett. , vol.37 , Issue.3 , pp. 377-392
    • Castaño, A.1    Fernández-Navarro, F.2    Hervás-Martínez, C.3
  • 56
    • 29644438050 scopus 로고    scopus 로고
    • Statistical comparisons of classifiers over multiple data sets
    • Dec.
    • J. Demšar, "Statistical comparisons of classifiers over multiple data sets," J. Mach. Learn. Res., vol. 7, pp. 1-30, Dec. 2006.
    • (2006) J. Mach. Learn. Res. , vol.7 , pp. 1-30
    • Demšar, J.1
  • 57
    • 0001837148 scopus 로고
    • A comparison of alternative tests of significance for the problem of m rankings
    • M. Friedman, "A comparison of alternative tests of significance for the problem of m rankings," Ann. Math. Stat., vol. 11, no. 1, pp. 86-92, 1940.
    • (1940) Ann. Math. Stat. , vol.11 , Issue.1 , pp. 86-92
    • Friedman, M.1
  • 60
    • 25444484657 scopus 로고    scopus 로고
    • Managing diversity in regression ensembles
    • Dec.
    • G. Brown, J. L. Wyatt, and P. Tiňo, "Managing diversity in regression ensembles," J. Mach. Learn. Res., vol. 6, pp. 1621-1650, Dec. 2005.
    • (2005) J. Mach. Learn. Res. , vol.6 , pp. 1621-1650
    • Brown, G.1    Wyatt, J.L.2    Tiňo, P.3
  • 61
    • 83855162220 scopus 로고    scopus 로고
    • Incremental learning from stream data
    • Dec.
    • H. He, S. Chen, K. Li, and X. Xu, "Incremental learning from stream data," IEEE Trans. Neural Netw., vol. 22, no. 12, pp. 1901-1914, Dec. 2011.
    • (2011) IEEE Trans. Neural Netw. , vol.22 , Issue.12 , pp. 1901-1914
    • He, H.1    Chen, S.2    Li, K.3    Xu, X.4
  • 62
    • 33749842512 scopus 로고    scopus 로고
    • Can AdaBoost. M1 learn incrementally? A comparison to Learn++ under different combination rules
    • H. Mohammed, J. Leander, M. Marbach, and R. Polikar, "Can AdaBoost. M1 learn incrementally? A comparison to Learn++ under different combination rules," in Proc. ICANN, vol. 4131. 2006, pp. 254-263.
    • (2006) Proc. ICANN , vol.4131 , pp. 254-263
    • Mohammed, H.1    Leander, J.2    Marbach, M.3    Polikar, R.4
  • 63
    • 58649083899 scopus 로고    scopus 로고
    • Learn++.NC: Combining ensemble of classifiers with dynamically weighted consult-and-vote for efficient incremental learning of new classes
    • Jan.
    • M. D. Muhlbaier, A. Topalis, and R. Polikar, "Learn++.NC: Combining ensemble of classifiers with dynamically weighted consult-and-vote for efficient incremental learning of new classes," IEEE Trans. Neural Netw., vol. 20, no. 1, pp. 152-168, Jan. 2009.
    • (2009) IEEE Trans. Neural Netw. , vol.20 , Issue.1 , pp. 152-168
    • Muhlbaier, M.D.1    Topalis, A.2    Polikar, R.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.