-
1
-
-
0033640646
-
Statistical pattern recognition: A review
-
Jan.
-
A. K. Jain, R. P. Duin, and J. Mao, "Statistical pattern recognition: A review," IEEE Trans. Pattern Anal. Mach. Intell., vol. 22, no. 1, pp. 4-37, Jan. 2000.
-
(2000)
IEEE Trans. Pattern Anal. Mach. Intell.
, vol.22
, Issue.1
, pp. 4-37
-
-
Jain, A.K.1
Duin, R.P.2
Mao, J.3
-
2
-
-
0003922190
-
-
2nd ed. New York, NY, USA: Wiley
-
R. O. Duda, P. E. Hart, and D. G. Stork, Pattern Classification, 2nd ed. New York, NY, USA: Wiley, 2000.
-
(2000)
Pattern Classification
-
-
Duda, R.O.1
Hart, P.E.2
Stork, D.G.3
-
4
-
-
0003890671
-
-
New York, NY, USA: Wiley
-
V. Cherkassky and F. M. Mulier, Learning From Data: Concepts, Theory, and Methods. New York, NY, USA: Wiley, 2007.
-
(2007)
Learning from Data: Concepts, Theory, and Methods
-
-
Cherkassky, V.1
Mulier, F.M.2
-
5
-
-
77951766869
-
Kernel discriminant learning for ordinal regression
-
Jun.
-
B.-Y. Sun, J. Li, D. D. Wu, X.-M. Zhang, and W.-B. Li, "Kernel discriminant learning for ordinal regression," IEEE Trans. Knowl. Data Eng., vol. 22, no. 6, pp. 906-910, Jun. 2010.
-
(2010)
IEEE Trans. Knowl. Data Eng.
, vol.22
, Issue.6
, pp. 906-910
-
-
Sun, B.-Y.1
Li, J.2
Wu, D.D.3
Zhang, X.-M.4
Li, W.-B.5
-
6
-
-
84876943494
-
Transductive ordinal regression
-
Jul.
-
C.-W. Seah, I. W. Tsang, and Y.-S. Ong, "Transductive ordinal regression," IEEE Trans. Neural Netw. Learn. Syst., vol. 23, no. 7, pp. 1074-1086, Jul. 2012.
-
(2012)
IEEE Trans. Neural Netw. Learn. Syst.
, vol.23
, Issue.7
, pp. 1074-1086
-
-
Seah, C.-W.1
Tsang, I.W.2
Ong, Y.-S.3
-
7
-
-
0001306637
-
Regression models for ordinal data
-
P. McCullagh, "Regression models for ordinal data,"J. Roy. Stat. Soc. Ser. B (Meth.), vol. 42, no. 2, pp. 109-142, 1980.
-
(1980)
J. Roy. Stat. Soc. Ser. B (Meth.)
, vol.42
, Issue.2
, pp. 109-142
-
-
McCullagh, P.1
-
8
-
-
0003143574
-
Regression and ordered categorical variables
-
J. A. Anderson, "Regression and ordered categorical variables," J. Roy. Stat. Soc. Ser. B (Meth.), vol. 46, no. 1, pp. 1-30, 1984.
-
(1984)
J. Roy. Stat. Soc. Ser. B (Meth.)
, vol.46
, Issue.1
, pp. 1-30
-
-
Anderson, J.A.1
-
10
-
-
84890120267
-
Addressing the EU sovereign ratings using an ordinal regression approach
-
Dec.
-
F. Fernández-Navarro, P. Campoy, M. De la Paz, C. Hervás-Martínez, and X. Yao, "Addressing the EU sovereign ratings using an ordinal regression approach," IEEE Trans. Cybern., vol. 43, no. 6, pp. 2228-2240, Dec. 2013.
-
(2013)
IEEE Trans. Cybern.
, vol.43
, Issue.6
, pp. 2228-2240
-
-
Fernández-Navarro, F.1
Campoy, P.2
De La-Paz, M.3
Hervás-Martínez, C.4
Yao, X.5
-
11
-
-
0008371352
-
Large margin rank boundaries for ordinal regression
-
A. Smola, P. Bartlett, B. Schölkopf, and D. Schuurmans, Eds. Cambridge, MA, USA: MIT Press
-
R. Herbrich, T. Graepel, and K. Obermayer, "Large margin rank boundaries for ordinal regression," in Advances in Large Margin Classifiers, A. Smola, P. Bartlett, B. Schölkopf, and D. Schuurmans, Eds. Cambridge, MA, USA: MIT Press, 2000, pp. 115-132.
-
(2000)
Advances in Large Margin Classifiers
, pp. 115-132
-
-
Herbrich, R.1
Graepel, T.2
Obermayer, K.3
-
12
-
-
33847626350
-
Support vector ordinal regression
-
W. Chu and S. S. Keerthi, "Support vector ordinal regression," Neural Comput., vol. 19, no. 3, pp. 792-815, 2007.
-
(2007)
Neural Comput.
, vol.19
, Issue.3
, pp. 792-815
-
-
Chu, W.1
Keerthi, S.S.2
-
13
-
-
21844453228
-
Gaussian processes for ordinal regression
-
Dec.
-
W. Chu and Z. Ghahramani, "Gaussian processes for ordinal regression," J. Mach. Learn. Res., vol. 6, pp. 1019-1041, Dec. 2005.
-
(2005)
J. Mach. Learn. Res.
, vol.6
, pp. 1019-1041
-
-
Chu, W.1
Ghahramani, Z.2
-
14
-
-
77955204500
-
Color image watermarking using regularized extreme learning machine
-
W. Deng and L. Chen, "Color image watermarking using regularized extreme learning machine," Neural Netw. World, vol. 20, no. 3, pp. 317-330, 2010.
-
(2010)
Neural Netw. World
, vol.20
, Issue.3
, pp. 317-330
-
-
Deng, W.1
Chen, L.2
-
15
-
-
84869000959
-
Evolutionary extreme learning machine for ordinal regression
-
LNCS 7665
-
D. Becerra-Alonso, M. Carbonero-Ruz, F. J. Martínez-Estudillo, and A. C. Martínez-Estudillo, "Evolutionary extreme learning machine for ordinal regression," in Proc. Neural Information Processing, LNCS 7665. 2012, pp. 217-227.
-
(2012)
Proc. Neural Information Processing
, pp. 217-227
-
-
Becerra-Alonso, D.1
Carbonero-Ruz, M.2
Martínez-Estudillo, F.J.3
Martínez-Estudillo, A.C.4
-
16
-
-
22844440904
-
Evolutionary extreme learning machine
-
Q.-Y. Zhu, A. K. Qin, P. N. Suganthan, and G.-B. Huang, "Evolutionary extreme learning machine," Pattern Recognit., vol. 38, no. 10, pp. 1759-1763, 2005.
-
(2005)
Pattern Recognit.
, vol.38
, Issue.10
, pp. 1759-1763
-
-
Zhu, Q.-Y.1
Qin, A.K.2
Suganthan, P.N.3
Huang, G.-B.4
-
17
-
-
0034315099
-
Ensembles with negative correlation learning
-
Nov.
-
Y. Liu, X. Yao, and T. Higuchi, "Ensembles with negative correlation learning," IEEE Trans. Evol. Comput., vol. 4, no. 4, pp. 380-387, Nov. 2000.
-
(2000)
IEEE Trans. Evol. Comput.
, vol.4
, Issue.4
, pp. 380-387
-
-
Liu, Y.1
Yao, X.2
Higuchi, T.3
-
19
-
-
78649975675
-
Active learning from stream data using optimal weight classifier ensemble
-
Dec.
-
X. Zhu, P. Zhang, X. Lin, and Y. Shi, "Active learning from stream data using optimal weight classifier ensemble," IEEE Trans. Syst., Man, Cybern. B, Cybern., vol. 40, no. 6, pp. 1607-1621, Dec. 2010.
-
(2010)
IEEE Trans. Syst., Man, Cybern. B, Cybern.
, vol.40
, Issue.6
, pp. 1607-1621
-
-
Zhu, X.1
Zhang, P.2
Lin, X.3
Shi, Y.4
-
20
-
-
79956208533
-
Empirical analysis and evaluation of approximate techniques for pruning regression bagging ensembles
-
D. Hernandez-Lobato, G. Martinez-Muoz, and A. Suarez, "Empirical analysis and evaluation of approximate techniques for pruning regression bagging ensembles," Neurocomputing, vol. 74, nos. 12-13, pp. 2250-2264, 2011.
-
(2011)
Neurocomputing
, vol.74
, Issue.12-13
, pp. 2250-2264
-
-
Hernandez-Lobato, D.1
Martinez-Muoz, G.2
Suarez, A.3
-
21
-
-
78649938427
-
On the evolutionary design of heterogeneous bagging models
-
A. L. Coelho and D. S. Nascimento, "On the evolutionary design of heterogeneous bagging models," Neurocomputing, vol. 73, nos. 16-18, pp. 3319-3322, 2010.
-
(2010)
Neurocomputing
, vol.73
, Issue.16-18
, pp. 3319-3322
-
-
Coelho, A.L.1
Nascimento, D.S.2
-
22
-
-
79954425497
-
Online multiple instance boosting for object detection
-
Z. Qi, Y. Xu, L. Wang, and Y. Song, "Online multiple instance boosting for object detection," Neurocomputing, vol. 74, no. 10, pp. 1769-1775, 2011.
-
(2011)
Neurocomputing
, vol.74
, Issue.10
, pp. 1769-1775
-
-
Qi, Z.1
Xu, Y.2
Wang, L.3
Song, Y.4
-
23
-
-
84948166287
-
A simple approach to ordinal classification
-
E. Frank and M. Hall, "A simple approach to ordinal classification," in Proc. ECML, 2001, pp. 145-156.
-
(2001)
Proc. ECML
, pp. 145-156
-
-
Frank, E.1
Hall, M.2
-
24
-
-
84857518260
-
An ensemble of weighted support vector machines for ordinal regression
-
W. Waegeman and L. Boullart, "An ensemble of weighted support vector machines for ordinal regression," Int. J. Comput. Syst. Sci. Eng., vol. 3, no. 1, pp. 47-51, 2009.
-
(2009)
Int. J. Comput. Syst. Sci. Eng.
, vol.3
, Issue.1
, pp. 47-51
-
-
Waegeman, W.1
Boullart, L.2
-
25
-
-
84886953869
-
Negative correlation ensemble learning for ordinal regression
-
Nov.
-
F. Fernández-Navarro, P. Gutierrez, C. Hervás-Martínez, and X. Yao, "Negative correlation ensemble learning for ordinal regression," IEEE Trans. Neural Netw. Learn. Syst., vol. 24, no. 11, pp. 1836-1849, Nov. 2013.
-
(2013)
IEEE Trans. Neural Netw. Learn. Syst.
, vol.24
, Issue.11
, pp. 1836-1849
-
-
Fernández-Navarro, F.1
Gutierrez, P.2
Hervás-Martínez, C.3
Yao, X.4
-
26
-
-
0000086449
-
Negatively correlated neural networks can produce best ensembles
-
Y. Liu and X. Yao, "Negatively correlated neural networks can produce best ensembles," Aust. J. Intell. Inf. Process. Syst., vol. 4, no. 3, pp. 176-185, 1997.
-
(1997)
Aust. J. Intell. Inf. Process. Syst.
, vol.4
, Issue.3
, pp. 176-185
-
-
Liu, Y.1
Yao, X.2
-
27
-
-
0033485370
-
Ensemble learning via negative correlation
-
Y. Liu and X. Yao, "Ensemble learning via negative correlation," Neural Netw., vol. 12, no. 10, pp. 1399-1404, 1999.
-
(1999)
Neural Netw.
, vol.12
, Issue.10
, pp. 1399-1404
-
-
Liu, Y.1
Yao, X.2
-
28
-
-
84899578727
-
Projection-based ensemble learning for ordinal regression
-
in press
-
M. Pérez-Ortiz, P. Gutiérrez, and C. Hervás-Martínez, "Projection-based ensemble learning for ordinal regression," IEEE Trans. Cybern., 2014, DOI http://dx.doi.org/10.1109/TCYB.2013.2266336 in press.
-
(2014)
IEEE Trans. Cybern.
-
-
Pérez-Ortiz, M.1
Gutiérrez, P.2
Hervás-Martínez, C.3
-
29
-
-
33750681345
-
Large-margin thresholded ensembles for ordinal regression: Theory and practice
-
H.-T. Lin and L. Li, "Large-margin thresholded ensembles for ordinal regression: Theory and practice," in Proc. 17th Int. Conf. Algorithmic Learn. Theory, 2006, pp. 319-333.
-
(2006)
Proc. 17th Int. Conf. Algorithmic Learn. Theory
, pp. 319-333
-
-
Lin, H.-T.1
Li, L.2
-
30
-
-
84867570390
-
Combining ordinal preferences by boosting
-
H.-T. Lin and L. Li, "Combining ordinal preferences by boosting," in Proc. ECML/PKDD, 2009, pp. 69-83.
-
(2009)
Proc. ECML/PKDD
, pp. 69-83
-
-
Lin, H.-T.1
Li, L.2
-
31
-
-
77958028886
-
Multi-class AdaBoost
-
J. Zhu, H. Zou, S. Rosset, and T. Hastie, "Multi-class AdaBoost," Stat. Interface, vol. 2, no. 1, pp. 349-360, 2009.
-
(2009)
Stat. Interface
, vol.2
, Issue.1
, pp. 349-360
-
-
Zhu, J.1
Zou, H.2
Rosset, S.3
Hastie, T.4
-
32
-
-
0033281701
-
Improved boosting algorithms using confidence-rated predictions
-
R. E. Schapire and Y. Singer, "Improved boosting algorithms using confidence-rated predictions," Mach. Learn., vol. 37, no. 3, pp. 297-336, 1999.
-
(1999)
Mach. Learn.
, vol.37
, Issue.3
, pp. 297-336
-
-
Schapire, R.E.1
Singer, Y.2
-
33
-
-
79958178274
-
Extreme learning machines: A survey
-
G.-B. Huang, D. Wang, and Y. Lan, "Extreme learning machines: A survey," Int. J. Mach. Learn. Cybern., vol. 2, no. 2, pp. 107-122, 2011.
-
(2011)
Int. J. Mach. Learn. Cybern.
, vol.2
, Issue.2
, pp. 107-122
-
-
Huang, G.-B.1
Wang, D.2
Lan, Y.3
-
34
-
-
78149290661
-
Dynamic AdaBoost ensemble extreme learning machine
-
G. Wang and P. Li, "Dynamic AdaBoost ensemble extreme learning machine," in Proc. ICACTE, vol. 3. 2010, pp. V3-54-V3-58.
-
(2010)
Proc. ICACTE
, vol.3
, pp. 54-58
-
-
Wang, G.1
Li, P.2
-
35
-
-
73849104985
-
An ensemble ELM based on modified AdaBoost.RT algorithm for predicting the temperature of molten steel in ladle furnace
-
Jan.
-
H.-X. Tian and Z.-Z. Mao, "An ensemble ELM based on modified AdaBoost.RT algorithm for predicting the temperature of molten steel in ladle furnace," IEEE Trans. Autom. Sci. Eng., vol. 7, no. 1, pp. 73-80, Jan. 2010.
-
(2010)
IEEE Trans. Autom. Sci. Eng.
, vol.7
, Issue.1
, pp. 73-80
-
-
Tian, H.-X.1
Mao, Z.-Z.2
-
36
-
-
84865775801
-
Dynamic ensemble extreme learning machine based on sample entropy
-
J.-H. Zhai, H.-Y. Xu, and X.-Z. Wang, "Dynamic ensemble extreme learning machine based on sample entropy," Soft Comput., vol. 16, no. 9, pp. 1493-1502, 2012.
-
(2012)
Soft Comput.
, vol.16
, Issue.9
, pp. 1493-1502
-
-
Zhai, J.-H.1
Xu, H.-Y.2
Wang, X.-Z.3
-
37
-
-
34547673383
-
Cost-sensitive boosting for classification of imbalanced data
-
Y. Sun, M. S. Kamel, A. K. C. Wong, and Y. Wang, "Cost-sensitive boosting for classification of imbalanced data," Pattern Recognit., vol. 40, no. 12, pp. 3358-3378, 2007.
-
(2007)
Pattern Recognit.
, vol.40
, Issue.12
, pp. 3358-3378
-
-
Sun, Y.1
Kamel, M.S.2
Wong, A.K.C.3
Wang, Y.4
-
38
-
-
84861176005
-
Reduction from cost-sensitive ordinal ranking to weighted binary classification
-
H.-T. Lin and L. Li, "Reduction from cost-sensitive ordinal ranking to weighted binary classification," Neural Comput., vol. 24, no. 5, pp. 1329-1367, 2012.
-
(2012)
Neural Comput.
, vol.24
, Issue.5
, pp. 1329-1367
-
-
Lin, H.-T.1
Li, L.2
-
39
-
-
10944272650
-
Extreme learning machine: A new learning scheme of feedforward neural networks
-
Jul.
-
G. B. Huang, Q. Y. Zhu, and C. K. Siew, "Extreme learning machine: A new learning scheme of feedforward neural networks," in Proc. IEEE Conf. Int. Conf. Neural Netw., vol. 2. Jul. 2004, pp. 985-990.
-
(2004)
Proc. IEEE Conf. Int. Conf. Neural Netw.
, vol.2
, pp. 985-990
-
-
Huang, G.B.1
Zhu, Q.Y.2
Siew, C.K.3
-
40
-
-
84868327149
-
Camera calibration based on extreme learning machine
-
C. Zhaohu, R. Xuemei, and C. Qiang, "Camera calibration based on extreme learning machine," in Proc. Int. Conf. Commun., Electron. Autom. Eng., vol. 181. 2013, pp. 115-120.
-
(2013)
Proc. Int. Conf. Commun., Electron. Autom. Eng.
, vol.181
, pp. 115-120
-
-
Zhaohu, C.1
Xuemei, R.2
Qiang, C.3
-
41
-
-
84872397124
-
Credit risk evaluation with extreme learning machine
-
Oct.
-
H. Zhou, Y. Lan, Y. C. Soh, G.-B. Huang, and R. Zhang, "Credit risk evaluation with extreme learning machine," in Proc. IEEE Int. Conf. Syst., Man, Cybern., Oct. 2012, pp. 1064-1069.
-
(2012)
Proc. IEEE Int. Conf. Syst., Man, Cybern.
, pp. 1064-1069
-
-
Zhou, H.1
Lan, Y.2
Soh, Y.C.3
Huang, G.-B.4
Zhang, R.5
-
42
-
-
79851475364
-
On the suitability of extreme learning machine for gene classification using feature selection
-
J. Sánchez-Monedero, M. Cruz-Ramírez, F. Fernández-Navarro, J. C. Fernández, P. A. Gutiérrez, and C. Hervás-Martínez, "On the suitability of extreme learning machine for gene classification using feature selection," in Proc. ISDA, 2010, pp. 507-512.
-
(2010)
Proc. ISDA
, pp. 507-512
-
-
Sánchez-Monedero, J.1
Cruz-Ramírez, M.2
Fernández-Navarro, F.3
Fernández, J.C.4
Gutiérrez, P.A.5
Hervás-Martínez, C.6
-
43
-
-
33745903481
-
Extreme learning machine: Theory and applications
-
G.-B. Huang, Q.-Y. Zhu, and C.-K. Siew, "Extreme learning machine: Theory and applications," Neurocomputing, vol. 70, nos. 1-3, pp. 489-501, 2006.
-
(2006)
Neurocomputing
, vol.70
, Issue.1-3
, pp. 489-501
-
-
Huang, G.-B.1
Zhu, Q.-Y.2
Siew, C.-K.3
-
44
-
-
84859007933
-
Extreme learning machine for regression and multiclass classification
-
Apr.
-
G.-B. Huang, H. Zhou, X. Ding, and R. Zhang, "Extreme learning machine for regression and multiclass classification," IEEE Trans. Syst., Man, Cybern. B, Cybern., vol. 42, no. 2, pp. 513-529, Apr. 2012.
-
(2012)
IEEE Trans. Syst., Man, Cybern. B, Cybern.
, vol.42
, Issue.2
, pp. 513-529
-
-
Huang, G.-B.1
Zhou, H.2
Ding, X.3
Zhang, R.4
-
46
-
-
34547992213
-
Multicategory classification using an extreme learning machine for microarray gene expression cancer diagnosis
-
Jul./Sep.
-
R. Zhang, G.-B. Huang, N. Sundararajan, and P. Saratchandran, "Multicategory classification using an extreme learning machine for microarray gene expression cancer diagnosis," IEEE/ACM Trans. Comput. Biol. Bioinform., vol. 4, no. 3, pp. 485-495, Jul./Sep. 2007.
-
(2007)
IEEE/ACM Trans. Comput. Biol. Bioinform.
, vol.4
, Issue.3
, pp. 485-495
-
-
Zhang, R.1
Huang, G.-B.2
Sundararajan, N.3
Saratchandran, P.4
-
47
-
-
0032028728
-
The sample complexity of pattern classification with neural networks: The size of the weights is more important than the size of the network
-
Mar.
-
P. Bartlett, "The sample complexity of pattern classification with neural networks: The size of the weights is more important than the size of the network," IEEE Trans. Inf. Theory, vol. 44, no. 2, pp. 525-536, Mar. 1998.
-
(1998)
IEEE Trans. Inf. Theory
, vol.44
, Issue.2
, pp. 525-536
-
-
Bartlett, P.1
-
48
-
-
77649238806
-
Composite function wavelet neural networks with extreme learning machine
-
J. Cao, Z. Lin, and G.-B. Huang, "Composite function wavelet neural networks with extreme learning machine," Neurocomputing, vol. 73, nos. 7-9, pp. 1405-1416, 2010.
-
(2010)
Neurocomputing
, vol.73
, Issue.7-9
, pp. 1405-1416
-
-
Cao, J.1
Lin, Z.2
Huang, G.-B.3
-
49
-
-
80955178270
-
MELM-GRBF: A modified version of the extreme learning machine for generalized radial basis function neural networks
-
F. Fernández-Navarro, C. Hervás-Martínez, J. Sánchez-Monedero, and P. A. Gutierrez, "MELM-GRBF: A modified version of the extreme learning machine for generalized radial basis function neural networks," Neurocomputing, vol. 74, no. 16, pp. 2502-2510, 2011.
-
(2011)
Neurocomputing
, vol.74
, Issue.16
, pp. 2502-2510
-
-
Fernández-Navarro, F.1
Hervás-Martínez, C.2
Sánchez-Monedero, J.3
Gutierrez, P.A.4
-
50
-
-
84942484786
-
Ridge regression: Biased estimation for nonorthogonal problems
-
A. E. Hoerl and R. W. Kennard, "Ridge regression: Biased estimation for nonorthogonal problems," Technometrics, vol. 12, no. 1, pp. 55-67, 1970.
-
(1970)
Technometrics
, vol.12
, Issue.1
, pp. 55-67
-
-
Hoerl, A.E.1
Kennard, R.W.2
-
52
-
-
34547698831
-
Learning to classify ordinal data: The data replication method
-
Dec.
-
J. S. Cardoso and J. F. P. da Costa, "Learning to classify ordinal data: The data replication method," J. Mach. Learn. Res., vol. 8, pp. 1393-1429, Dec. 2007.
-
(2007)
J. Mach. Learn. Res.
, vol.8
, pp. 1393-1429
-
-
Cardoso, J.S.1
Da Costa, J.F.P.2
-
53
-
-
76749092270
-
The WEKA data mining software: An update
-
Nov.
-
M. Hall, E. Frank, G. Holmes, B. Pfahringer, P. Reutemann, and I. H. Witten, "The WEKA data mining software: An update," Special Interest Group Knowl. Discovery Data Mining Explorer Newslett., vol. 11, pp. 10-18, Nov. 2009.
-
(2009)
Special Interest Group Knowl. Discovery Data Mining Explorer Newslett.
, vol.11
, pp. 10-18
-
-
Hall, M.1
Frank, E.2
Holmes, G.3
Pfahringer, B.4
Reutemann, P.5
Witten, I.H.6
-
54
-
-
78649492071
-
Ordinal extreme learning machine
-
W.-Y. Deng, Q.-H. Zheng, S. Lian, L. Chen, and X. Wang, "Ordinal extreme learning machine," Neurocomputing, vol. 74, nos. 1-3, pp. 447-456, 2010.
-
(2010)
Neurocomputing
, vol.74
, Issue.1-3
, pp. 447-456
-
-
Deng, W.-Y.1
Zheng, Q.-H.2
Lian, S.3
Chen, L.4
Wang, X.5
-
55
-
-
84878148836
-
PCAELM: A robust and pruned extreme learning machine approach based on principal component analysis
-
A. Castaño, F. Fernández-Navarro, and C. Hervás-Martínez, "PCAELM: A robust and pruned extreme learning machine approach based on principal component analysis," Neural Process. Lett., vol. 37, no. 3, pp. 377-392, 2013.
-
(2013)
Neural Process. Lett.
, vol.37
, Issue.3
, pp. 377-392
-
-
Castaño, A.1
Fernández-Navarro, F.2
Hervás-Martínez, C.3
-
56
-
-
29644438050
-
Statistical comparisons of classifiers over multiple data sets
-
Dec.
-
J. Demšar, "Statistical comparisons of classifiers over multiple data sets," J. Mach. Learn. Res., vol. 7, pp. 1-30, Dec. 2006.
-
(2006)
J. Mach. Learn. Res.
, vol.7
, pp. 1-30
-
-
Demšar, J.1
-
57
-
-
0001837148
-
A comparison of alternative tests of significance for the problem of m rankings
-
M. Friedman, "A comparison of alternative tests of significance for the problem of m rankings," Ann. Math. Stat., vol. 11, no. 1, pp. 86-92, 1940.
-
(1940)
Ann. Math. Stat.
, vol.11
, Issue.1
, pp. 86-92
-
-
Friedman, M.1
-
59
-
-
84858842285
-
An experimental study of different ordinal regression methods and measures
-
LNCS 7209. Berlin/Heidelberg, Germany: Springer
-
P. A. Gutiérrez, M. Pérez-Ortiz, F. Fernández-Navarro, J. Sánchez-Monedero, and C. Hervás-Martínez, "An experimental study of different ordinal regression methods and measures," in Hybrid Artificial Intelligent Systems, LNCS 7209. Berlin/Heidelberg, Germany: Springer, 2012, pp. 296-307.
-
(2012)
Hybrid Artificial Intelligent Systems
, pp. 296-307
-
-
Gutiérrez, P.A.1
Pérez-Ortiz, M.2
Fernández-Navarro, F.3
Sánchez-Monedero, J.4
Hervás-Martínez, C.5
-
60
-
-
25444484657
-
Managing diversity in regression ensembles
-
Dec.
-
G. Brown, J. L. Wyatt, and P. Tiňo, "Managing diversity in regression ensembles," J. Mach. Learn. Res., vol. 6, pp. 1621-1650, Dec. 2005.
-
(2005)
J. Mach. Learn. Res.
, vol.6
, pp. 1621-1650
-
-
Brown, G.1
Wyatt, J.L.2
Tiňo, P.3
-
61
-
-
83855162220
-
Incremental learning from stream data
-
Dec.
-
H. He, S. Chen, K. Li, and X. Xu, "Incremental learning from stream data," IEEE Trans. Neural Netw., vol. 22, no. 12, pp. 1901-1914, Dec. 2011.
-
(2011)
IEEE Trans. Neural Netw.
, vol.22
, Issue.12
, pp. 1901-1914
-
-
He, H.1
Chen, S.2
Li, K.3
Xu, X.4
-
62
-
-
33749842512
-
Can AdaBoost. M1 learn incrementally? A comparison to Learn++ under different combination rules
-
H. Mohammed, J. Leander, M. Marbach, and R. Polikar, "Can AdaBoost. M1 learn incrementally? A comparison to Learn++ under different combination rules," in Proc. ICANN, vol. 4131. 2006, pp. 254-263.
-
(2006)
Proc. ICANN
, vol.4131
, pp. 254-263
-
-
Mohammed, H.1
Leander, J.2
Marbach, M.3
Polikar, R.4
-
63
-
-
58649083899
-
Learn++.NC: Combining ensemble of classifiers with dynamically weighted consult-and-vote for efficient incremental learning of new classes
-
Jan.
-
M. D. Muhlbaier, A. Topalis, and R. Polikar, "Learn++.NC: Combining ensemble of classifiers with dynamically weighted consult-and-vote for efficient incremental learning of new classes," IEEE Trans. Neural Netw., vol. 20, no. 1, pp. 152-168, Jan. 2009.
-
(2009)
IEEE Trans. Neural Netw.
, vol.20
, Issue.1
, pp. 152-168
-
-
Muhlbaier, M.D.1
Topalis, A.2
Polikar, R.3
|