메뉴 건너뛰기




Volumn 43, Issue , 2014, Pages 453-458

A novel groutability estimation model for ground improvement projects in sandy silt soil based on Bayesian framework

Author keywords

Bayesian framework; Groutability prediction; K nearest neighbor; Machine learning; Microfine cement

Indexed keywords

CONCRETE CONSTRUCTION; FORECASTING; GROUTING; HIGHWAY ENGINEERING; LEARNING SYSTEMS; MORTAR; MOTION COMPENSATION; NEAREST NEIGHBOR SEARCH; PROBABILITY DENSITY FUNCTION; RAPID TRANSIT; SILT;

EID: 84904889231     PISSN: 08867798     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.tust.2014.07.001     Document Type: Article
Times cited : (16)

References (28)
  • 1
    • 48649092954 scopus 로고    scopus 로고
    • Incremental Bayesian classification for multivariate normal distribution data
    • Agrawal R.K., Bala R. Incremental Bayesian classification for multivariate normal distribution data. Pattern Recogn. Lett. 2008, 29:1873-1876.
    • (2008) Pattern Recogn. Lett. , vol.29 , pp. 1873-1876
    • Agrawal, R.K.1    Bala, R.2
  • 2
    • 0036816259 scopus 로고    scopus 로고
    • Estimating the groutability of granular soils: a new approach
    • Akbulut S., Saglamer A. Estimating the groutability of granular soils: a new approach. Tunn. Undergr. Space Technol. 2002, 17:371-380.
    • (2002) Tunn. Undergr. Space Technol. , vol.17 , pp. 371-380
    • Akbulut, S.1    Saglamer, A.2
  • 3
    • 28444464820 scopus 로고    scopus 로고
    • Forecasting stock composite index by fuzzy Support Vector Machine regression. In: Proceedings of the Fourth International Conference on Machine Learning and Cybernetics, Guangzhou, 18-21 August 2005.
    • Bao, Y.K., Tao, Z., Guo, L.L., Wang, W., 2005. Forecasting stock composite index by fuzzy Support Vector Machine regression. In: Proceedings of the Fourth International Conference on Machine Learning and Cybernetics, Guangzhou, 18-21 August 2005.
    • (2005)
    • Bao, Y.K.1    Tao, Z.2    Guo, L.L.3    Wang, W.4
  • 5
    • 58149310827 scopus 로고    scopus 로고
    • Studies on construction pre-control of a connection aisle between two neighbouring tunnels in shanghai by means of 3D FEM, neural networks and fuzzy logic
    • Chen Y.-L., Azzam R., Fernandez-Steeger T., Li L. Studies on construction pre-control of a connection aisle between two neighbouring tunnels in shanghai by means of 3D FEM, neural networks and fuzzy logic. Geotech. Geol. Eng. 2009, 27:155-167.
    • (2009) Geotech. Geol. Eng. , vol.27 , pp. 155-167
    • Chen, Y.-L.1    Azzam, R.2    Fernandez-Steeger, T.3    Li, L.4
  • 6
    • 84884501774 scopus 로고    scopus 로고
    • Hybrid intelligence approach based on LS-SVM and Differential Evolution for construction cost index estimation: a Taiwan case study
    • Cheng M.-Y., Hoang N.-D., Wu Y.-W. Hybrid intelligence approach based on LS-SVM and Differential Evolution for construction cost index estimation: a Taiwan case study. Autom. Constr. 2013, 35:306-313.
    • (2013) Autom. Constr. , vol.35 , pp. 306-313
    • Cheng, M.-Y.1    Hoang, N.-D.2    Wu, Y.-W.3
  • 7
    • 34249966007 scopus 로고
    • The CN2 induction algorithm
    • Clark P., Niblett T. The CN2 induction algorithm. Mach. Learn. 1989, 3:261-283.
    • (1989) Mach. Learn. , vol.3 , pp. 261-283
    • Clark, P.1    Niblett, T.2
  • 8
    • 0031269184 scopus 로고    scopus 로고
    • On the optimality of the simple Bayesian classifier under zero-one loss
    • Domingos P., Pazzani M. On the optimality of the simple Bayesian classifier under zero-one loss. Mach. Learn. 1997, 29:103-130.
    • (1997) Mach. Learn. , vol.29 , pp. 103-130
    • Domingos, P.1    Pazzani, M.2
  • 11
    • 79957856018 scopus 로고    scopus 로고
    • A study of applying microfine cement grout to sandy silt soil
    • Huang C.L., Fan J.C., Yang W.J. A study of applying microfine cement grout to sandy silt soil. Sino-Geotechnics 2007, 111:71-82.
    • (2007) Sino-Geotechnics , vol.111 , pp. 71-82
    • Huang, C.L.1    Fan, J.C.2    Yang, W.J.3
  • 13
    • 78650569194 scopus 로고    scopus 로고
    • New approaches to determine the ultimate bearing capacity of shallow foundations based on artificial neural networks and ant colony optimization
    • Kalinli A., Acar M.C., Gunduz Z. New approaches to determine the ultimate bearing capacity of shallow foundations based on artificial neural networks and ant colony optimization. Eng. Geol. 2011, 117:29-38.
    • (2011) Eng. Geol. , vol.117 , pp. 29-38
    • Kalinli, A.1    Acar, M.C.2    Gunduz, Z.3
  • 14
    • 71749096569 scopus 로고    scopus 로고
    • Evolutionary artificial neural networks by multi-dimensional particle swarm optimization
    • Kiranyaz S., Ince T., Yildirim A., Gabbouj M. Evolutionary artificial neural networks by multi-dimensional particle swarm optimization. Neural Networks 2009, 22:1448-1462.
    • (2009) Neural Networks , vol.22 , pp. 1448-1462
    • Kiranyaz, S.1    Ince, T.2    Yildirim, A.3    Gabbouj, M.4
  • 15
    • 0027682531 scopus 로고
    • Inductive and Bayesian learning in medical diagnosis
    • Kononenko I. Inductive and Bayesian learning in medical diagnosis. Appl. Artif. Intell. 1993, 7:317-337.
    • (1993) Appl. Artif. Intell. , vol.7 , pp. 317-337
    • Kononenko, I.1
  • 17
    • 80052925636 scopus 로고    scopus 로고
    • An artificial neural network for groutability prediction of permeation grouting with microfine cement grouts
    • Liao K.-W., Fan J.-C., Huang C.-L. An artificial neural network for groutability prediction of permeation grouting with microfine cement grouts. Comput. Geotech. 2011, 38:978-986.
    • (2011) Comput. Geotech. , vol.38 , pp. 978-986
    • Liao, K.-W.1    Fan, J.-C.2    Huang, C.-L.3
  • 18
    • 28444488356 scopus 로고    scopus 로고
    • Effect of grain size and distribution on permeability and mechanical behavior of acrylamide grouted sand
    • Ozgurel H.G., Vipulanandan C. Effect of grain size and distribution on permeability and mechanical behavior of acrylamide grouted sand. J. Geotech. Geoenviron. Eng. 2005, 131:1457-1465.
    • (2005) J. Geotech. Geoenviron. Eng. , vol.131 , pp. 1457-1465
    • Ozgurel, H.G.1    Vipulanandan, C.2
  • 19
    • 0036162644 scopus 로고    scopus 로고
    • Repair of 130-year old masonry bridge using high-performance cement grout
    • Perret S., Khayat K.H., Gagnon E., Rhazi J. Repair of 130-year old masonry bridge using high-performance cement grout. J. Bridge Eng. 2002, 7:31-38.
    • (2002) J. Bridge Eng. , vol.7 , pp. 31-38
    • Perret, S.1    Khayat, K.H.2    Gagnon, E.3    Rhazi, J.4
  • 20
    • 0034236967 scopus 로고    scopus 로고
    • Rheological behavior and setting time of microfine cement-based grouts
    • Perret S., Palardy D., Ballivy G. Rheological behavior and setting time of microfine cement-based grouts. Mater. J. 2000, 97:472-478.
    • (2000) Mater. J. , vol.97 , pp. 472-478
    • Perret, S.1    Palardy, D.2    Ballivy, G.3
  • 24
    • 0002442796 scopus 로고    scopus 로고
    • Machine learning in automated text categorization
    • Sebastiani F. Machine learning in automated text categorization. ACM Comput. Surv. 2002, 34:1-47.
    • (2002) ACM Comput. Surv. , vol.34 , pp. 1-47
    • Sebastiani, F.1
  • 25
    • 79551588368 scopus 로고    scopus 로고
    • Artificial neural networks approach for estimating the groutability of granular soils with cement-based grouts
    • Tekin E., Akbas S. Artificial neural networks approach for estimating the groutability of granular soils with cement-based grouts. Bull. Eng. Geol. Environ. 2011, 70:153-161.
    • (2011) Bull. Eng. Geol. Environ. , vol.70 , pp. 153-161
    • Tekin, E.1    Akbas, S.2
  • 27
    • 0024872640 scopus 로고
    • Injection of fine sands with very fine cement grout
    • Zebovitz S., Krizek R.J., Atmatzidis D.K. Injection of fine sands with very fine cement grout. J. Geotech. Eng. 1989, 115:1717-1733.
    • (1989) J. Geotech. Eng. , vol.115 , pp. 1717-1733
    • Zebovitz, S.1    Krizek, R.J.2    Atmatzidis, D.K.3
  • 28
    • 21144472438 scopus 로고
    • Model selection via multifold cross validation
    • Zhang P. Model selection via multifold cross validation. Ann. Stat. 1993, 21:299-313.
    • (1993) Ann. Stat. , vol.21 , pp. 299-313
    • Zhang, P.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.