-
1
-
-
35348875044
-
Electrochemical photolysis of water at a semiconductor electrode
-
Fujishima, A.&Honda, K. Electrochemical photolysis of water at a semiconductor electrode. Nature 238, 37-38 (1972).
-
(1972)
Nature
, vol.238
, pp. 37-38
-
-
Fujishima, A.1
Honda, K.2
-
2
-
-
34547486889
-
Titanium dioxide nanomaterials: Synthesis, properties, modifications and applications
-
DOI 10.1021/cr0500535
-
Chen, X. & Mao, S. Titanium dioxide nanomaterials: synthesis, properties, modifications, and applications. Chem. Rev. 107, 2891-2959 (2007). (Pubitemid 47162903)
-
(2007)
Chemical Reviews
, vol.107
, Issue.7
, pp. 2891-2959
-
-
Chen, X.1
Mao, S.S.2
-
3
-
-
77956838396
-
Photocatalytic water splitting: Recent progress and future challenges
-
Maeda, K. & Domen, K. Photocatalytic water splitting: recent progress and future challenges. J. Phys. Chem. Lett. 1, 2655-2611 (2010).
-
(2010)
J. Phys. Chem. Lett.
, vol.1
, pp. 2655-2611
-
-
Maeda, K.1
Domen, K.2
-
4
-
-
0035891138
-
Photoelectrochemical cells
-
Grazel, M. Photoelectrochemical cells. Nature 414, 338-344 (2001).
-
(2001)
Nature
, vol.414
, pp. 338-344
-
-
Grazel, M.1
-
5
-
-
84868681146
-
In situ growth of a ZnO nanowire network within a TiO2 nanoparticle film for enhanced dye-sensitized solar cell performance
-
Bai, Y. et al. In situ growth of a ZnO nanowire network within a TiO2 nanoparticle film for enhanced dye-sensitized solar cell performance. Adv. Mater. 24, 5850-5856 (2012).
-
(2012)
Adv. Mater.
, vol.24
, pp. 5850-5856
-
-
Bai, Y.1
-
6
-
-
0000900239
-
High mobility ntype charge carriers in large single crystals of anatase (TiO2)
-
Forro, L., Chauvet, O., Emin, D., Zuppiroli, L., Berger, H. & Levy, F. High mobility ntype charge carriers in large single crystals of anatase (TiO2). J. Appl. Phys. 75, 633-635 (1994).
-
(1994)
J. Appl. Phys.
, vol.75
, pp. 633-635
-
-
Forro, L.1
Chauvet, O.2
Emin, D.3
Zuppiroli, L.4
Berger, H.5
Levy, F.6
-
7
-
-
77950249008
-
Nonepitaxial growth of hybrid core-shell nanostructures with large lattice mismatches
-
Zhang, J., Tang, Y., Lee, K.&Ouyang,M.Nonepitaxial growth of hybrid core-shell nanostructures with large lattice mismatches. Science 327, 1634-1638 (2010).
-
(2010)
Science
, vol.327
, pp. 1634-1638
-
-
Zhang, J.1
Tang, Y.2
Lee, K.3
Ouyang, M.4
-
8
-
-
77957195588
-
Strategic synthesis of hierarchical TiO2 microspheres with enhanced photocatalytic activity
-
Zheng, Z. K., Huang, B. B., Qin, X. Y., Zhang, X. Y. & Dai, Y. Strategic synthesis of hierarchical TiO2 microspheres with enhanced photocatalytic activity. Chem. Eur. J. 16, 11266-11270 (2010).
-
(2010)
Chem. Eur. J.
, vol.16
, pp. 11266-11270
-
-
Zheng, Z.K.1
Huang, B.B.2
Qin, X.Y.3
Zhang, X.Y.4
Dai, Y.5
-
9
-
-
33645810366
-
Piezoelectric nanogenerators based on zinc oxide nanowire arrays
-
Wang, Z. L. & Song, J. Piezoelectric nanogenerators based on zinc oxide nanowire arrays. Science 312, 242-246 (2006).
-
(2006)
Science
, vol.312
, pp. 242-246
-
-
Wang, Z.L.1
Song, J.2
-
10
-
-
84890282145
-
Inverse opal structured Ag/TiO2 plasmonic photocatalyst prepared by pulsed current deposition and its enhanced visible light photocatalytic activity
-
Chen, Z. Y. et al. Inverse opal structured Ag/TiO2 plasmonic photocatalyst prepared by pulsed current deposition and its enhanced visible light photocatalytic activity. J. Mater. Chem. A 2, 824-832 (2014).
-
(2014)
J. Mater. Chem. A
, vol.2
, pp. 824-832
-
-
Chen, Z.Y.1
-
11
-
-
84871736806
-
A highly efficient TiO2@ZnO n-p-n heterojunction nanorod photocatalyst
-
Lin, L. et al. A highly efficient TiO2@ZnO n-p-n heterojunction nanorod photocatalyst Nanoscale 5, 588-593 (2013).
-
(2013)
Nanoscale
, vol.5
, pp. 588-593
-
-
Lin, L.1
-
12
-
-
33847748193
-
Meeting the clean energy demand: Nanostructure architectures for solar energy conversion
-
DOI 10.1021/jp066952u
-
Kamat, P. V. Meeting the clean energy demand: nanostructure architectures for solar energy conversion. J. Phys. Chem. C 111, 2834-2860 (2007). (Pubitemid 46384290)
-
(2007)
Journal of Physical Chemistry C
, vol.111
, Issue.7
, pp. 2834-2860
-
-
Kamat, P.V.1
-
13
-
-
84897985663
-
Highly efficient photoelectrochemical response by sea-urchin shaped ZnO/TiO2 nano/micro hybrid heterostructures co-sensitized with CdS/CdSe
-
Ali, Z., Shakira, I. & Kang, D. J. Highly efficient photoelectrochemical response by sea-urchin shaped ZnO/TiO2 nano/micro hybrid heterostructures co-sensitized with CdS/CdSe. J. Mater. Chem. A 2, 6474-6479 (2014).
-
(2014)
J. Mater. Chem. A
, vol.2
, pp. 6474-6479
-
-
Ali, Z.1
Shakira, I.2
Kang, D.J.3
-
14
-
-
84876523740
-
Enhanced photovoltaic performance of dye-sensitized solar cells based on ZnO microrod array/TiO2 nanoparticle hybrid films
-
Yang, G. W., Wang, Q., Miao, C. C., Bu, Z. H. & Guo, W. Y. Enhanced photovoltaic performance of dye-sensitized solar cells based on ZnO microrod array/TiO2 nanoparticle hybrid films. J. Mater. Chem. A 1, 3112-3117 (2013).
-
(2013)
J. Mater. Chem. A
, vol.1
, pp. 3112-3117
-
-
Yang, G.W.1
Wang, Q.2
Miao, C.C.3
Bu, Z.H.4
Guo, W.Y.5
-
15
-
-
0000262804
-
Exploiting the interparticle electron transfer process in the photocatalysed oxidation of phenol, 2-chlorophenol and pentachlorophenol: Chemical evidence for electron and hole transfer between coupled semiconductors
-
Serpone, N., Maruthamuthu, P., Pichat, P., Pelizzetti, E. & Hidaka, H. Exploiting the interparticle electron transfer process in the photocatalysed oxidation of phenol, 2-chlorophenol and pentachlorophenol: chemical evidence for electron and hole transfer between coupled semiconductors. J. Photochem. Photobiol. A 85, 247-255 (1995).
-
(1995)
J. Photochem. Photobiol. A
, vol.85
, pp. 247-255
-
-
Serpone, N.1
Maruthamuthu, P.2
Pichat, P.3
Pelizzetti, E.4
Hidaka, H.5
-
16
-
-
44449091492
-
Anatase TiO2 single crystals with a large percentage of reactive facets
-
Yang, H. G. et al. Anatase TiO2 single crystals with a large percentage of reactive facets. Nature 453, 638-642 (2008).
-
(2008)
Nature
, vol.453
, pp. 638-642
-
-
Yang, H.G.1
-
17
-
-
71549127108
-
Highly efficient photocatalyst: TiO2 microspheres produced from TiO2 nanosheets with a high percentage of reactive {001} facets
-
Zheng, Z. K. et al. Highly efficient photocatalyst: TiO2 microspheres produced from TiO2 nanosheets with a high percentage of reactive {001} facets. Chem. Eur. J. 15, 12576-12579 (2009).
-
(2009)
Chem. Eur. J.
, vol.15
, pp. 12576-12579
-
-
Zheng, Z.K.1
-
18
-
-
66749116590
-
Synthesis of titania nanosheets with a high percentage of exposed (001) facets and related photocatalytic properties
-
Han, X. G., Kuang, Q., Jin, M. S., Xie, Z. X. & Zheng, L. S. Synthesis of titania nanosheets with a high percentage of exposed (001) facets and related photocatalytic properties. J. Am. Chem. Soc. 131, 3152-3153 (2009).
-
(2009)
J. Am. Chem. Soc.
, vol.131
, pp. 3152-3153
-
-
Han, X.G.1
Kuang, Q.2
Jin, M.S.3
Xie, Z.X.4
Zheng, L.S.5
-
19
-
-
79959923139
-
Facile in situ synthesis of visible-light plasmonic photocatalysts M@TiO2 (M 5 Au, Pt, Ag) and evaluation of their photocatalytic oxidation of benzene to phenol J
-
Zheng, Z. K. et al. Facile in situ synthesis of visible-light plasmonic photocatalysts M@TiO2 (M 5 Au, Pt, Ag) and evaluation of their photocatalytic oxidation of benzene to phenol J. Mater. Chem. 21, 9079-9087 (2011).
-
(2011)
Mater. Chem.
, vol.21
, pp. 9079-9087
-
-
Zheng, Z.K.1
-
20
-
-
70349113134
-
Visible light responsive nitrogen doped anatase TiO2 sheets with dominant {001} facets derived from TiN
-
Liu, G. et al. Visible light responsive nitrogen doped anatase TiO2 sheets with dominant {001} facets derived from TiN. J. Am. Chem. Soc. 131, 12868-12869 (2009).
-
(2009)
J. Am. Chem. Soc.
, vol.131
, pp. 12868-12869
-
-
Liu, G.1
-
21
-
-
84855758556
-
Secondary branching and nitrogen doping of ZnO nanotetrapods: Building a highly active network for photoelectrochemical water splitting
-
Qiu, Y. C., Yan, K. Y., Deng, H. & Yang, S. H. Secondary branching and nitrogen doping of ZnO nanotetrapods: building a highly active network for photoelectrochemical water splitting. Nano Lett. 12, 407-413 (2012).
-
(2012)
Nano Lett
, vol.12
, pp. 407-413
-
-
Qiu, Y.C.1
Yan, K.Y.2
Deng, H.3
Yang, S.H.4
-
22
-
-
33751072072
-
Determination of carrier density of ZnO nanowires by electrochemical Techniques
-
Mora-Sero A. et al. Determination of carrier density of ZnO nanowires by electrochemical Techniques. Appl. Phys. Lett. 89, 203117 (2006).
-
(2006)
Appl. Phys. Lett.
, vol.89
, pp. 203117
-
-
Mora-Sero, A.1
-
23
-
-
84867020996
-
Full solution-processed synthesis of all metal oxide-based tree-like heterostructures on fluorine-doped tin oxide for water splitting
-
Yin, Z. Y. et al. Full solution-processed synthesis of all metal oxide-based tree-like heterostructures on fluorine-doped tin oxide for water splitting. Adv. Mater. 24, 5374-5378 (2012).
-
(2012)
Adv. Mater.
, vol.24
, pp. 5374-5378
-
-
Yin, Z.Y.1
-
24
-
-
84884275961
-
Facile fabrication of hierarchical TiO2 nanobelt/ZnO nanorod heterogeneous nanostructure: An efficient photoanode for water splitting
-
Pan, K. et al. Facile fabrication of hierarchical TiO2 nanobelt/ZnO nanorod heterogeneous nanostructure: an efficient photoanode for water splitting. ACS Appl. Mater. Interfaces 5, 8314-8320 (2013).
-
(2013)
ACS Appl. Mater. Interfaces
, vol.5
, pp. 8314-8320
-
-
Pan, K.1
-
25
-
-
0038575800
-
2 thin-film solar cells
-
DOI 10.1002/pip.494
-
Ramanathan, K. et al. Properties of 19.2% efficiency ZnO/CdS/CuInGaSe2 thinfilm solar cells. Prog. Photovolt: Res. Appl. 11, 225-230 (2003). (Pubitemid 36756903)
-
(2003)
Progress in Photovoltaics: Research and Applications
, vol.11
, Issue.4
, pp. 225-230
-
-
Ramanathan, K.1
Contreras, M.A.2
Perkins, C.L.3
Asher, S.4
Hasoon, F.S.5
Keane, J.6
Young, D.7
Romero, M.8
Metzger, W.9
Noufi, R.10
Ward, J.11
Duda, A.12
-
26
-
-
79751514767
-
Synthesis of single crystalline anatase TiO2 (001) tetragonal nanosheet-array films on fluorine-doped tin oxide substrate
-
Feng, S. L. et al. Synthesis of single crystalline anatase TiO2 (001) tetragonal nanosheet-array films on fluorine-doped tin oxide substrate. J. Am. Ceram. Soc. 94, 310-315 (2011).
-
(2011)
J. Am. Ceram. Soc.
, vol.94
, pp. 310-315
-
-
Feng, S.L.1
-
27
-
-
0041305911
-
Low-temperature wafer-scale production of ZnO nanowire arrays
-
DOI 10.1002/anie.200351461
-
Greene, L. E. et al. Low-temperature wafer-scale production of ZnO nanowire arrays. Angew. Chem., Int. Ed. 42, 3031-3034 (2003). (Pubitemid 36897012)
-
(2003)
Angewandte Chemie - International Edition
, vol.42
, Issue.26
, pp. 3031-3034
-
-
Greene, L.E.1
Law, M.2
Goldberger, J.3
Kim, F.4
Johnson, J.C.5
Zhang, Y.6
Saykally, R.J.7
Yang, P.8
-
28
-
-
17544394135
-
Solution deposition of thin solid compound films by a successive ionic-layer adsorption and reaction process
-
Nicolau, Y. Solution deposition of thin solid compound films by a successive ionic-layer adsorption and reaction process. Appl. Surf. Sci. 22-23, 1061-1074 (1985).
-
(1985)
Appl. Surf. Sci.
, vol.22-23
, pp. 1061-1074
-
-
Nicolau, Y.1
-
29
-
-
68749092839
-
Fabrication of ZnO/CdS core/shell nanowire arrays for efficient solar energy conversion
-
Tak, Y., Hong, S. J., Lee, J. S. & Yong, K. Fabrication of ZnO/CdS core/shell nanowire arrays for efficient solar energy conversion. J. Mater. Chem. 19, 5945-5951 (2009).
-
(2009)
J. Mater. Chem.
, vol.19
, pp. 5945-5951
-
-
Tak, Y.1
Hong, S.J.2
Lee, J.S.3
Yong, K.4
-
30
-
-
67749111685
-
Growth of oriented single-crystalline rutile TiO2 nanorods on transparent conducting substrates for dye-sensitized solar cells
-
Liu, B. &Aydil, E. S. Growth of oriented single-crystalline rutile TiO2 nanorods on transparent conducting substrates for dye-sensitized solar cells. J. Am. Chem. Soc. 131, 3985-3990 (2009).
-
(2009)
J. Am. Chem. Soc.
, vol.131
, pp. 3985-3990
-
-
Liu, B.1
Aydil, E.S.2
-
31
-
-
84872712559
-
Photochemical deposition of Pt on CdS for H2 evolution from water: Markedly enhanced activity by controlling Pt reduction environment
-
Wang, Y. B.,Wang, Y. S. & Xu, R. Photochemical deposition of Pt on CdS for H2 evolution from water: markedly enhanced activity by controlling Pt reduction environment. J. Phys. Chem. C 117, 7832790 (2013).
-
(2013)
J. Phys. Chem. C
, vol.117
, pp. 7832790
-
-
Wang, Y.B.1
Wang, Y.S.2
Xu, R.3
|