-
1
-
-
84883516886
-
12 Li-ion battery electrodes combining high rates with high energy density
-
12 Li-ion battery electrodes combining high rates with high energy density. Electrochem. Commun. 2013, 35, 124-127.
-
(2013)
Electrochem. Commun.
, vol.35
, pp. 124-127
-
-
Singh, D.P.1
Mulder, F.M.2
Wagemaker, M.3
-
2
-
-
84865056968
-
12 by microemulsion and its application as anode material for Li-ion batteries
-
12 by microemulsion and its application as anode material for Li-ion batteries. J. Power Sources2012, 220, 84-88.
-
(2012)
J. Power Sources
, vol.220
, pp. 84-88
-
-
Liu, G.Y.1
Wang, H.Y.2
Liu, G.Q.3
Yang, Z.Z.4
Jin, B.5
Jiang, Q.C.6
-
3
-
-
84887934112
-
12 and its application to the asymmetric hybrid capacitor
-
12 and its application to the asymmetric hybrid capacitor. Electron. Mater. Lett. 2013, 9, 871-873.
-
(2013)
Electron. Mater. Lett.
, vol.9
, pp. 871-873
-
-
Lee, B.1
Yoon, J.R.2
-
5
-
-
84876023879
-
Electrochemical profile of lithium titanate/hard carbon composite as anode material for Li-ion batteries
-
Zhu, G. N.; Du, Y. J.; Wang, Y. G.; Yu, A. S.; Xia, Y. Y. Electrochemical profile of lithium titanate/hard carbon composite as anode material for Li-ion batteries. J. Electroanal. Chem. 2013, 688, 86-92.
-
(2013)
J. Electroanal. Chem.
, vol.688
, pp. 86-92
-
-
Zhu, G.N.1
Du, Y.J.2
Wang, Y.G.3
Yu, A.S.4
Xia, Y.Y.5
-
6
-
-
84862233138
-
12 (similar to 20 nm) for lithium ion batteries with superior high-rate performance
-
12 (similar to 20 nm) for lithium ion batteries with superior high-rate performance. J. Mater. Chem. 2012, 22, 11688-11693.
-
(2012)
J. Mater. Chem.
, vol.22
, pp. 11688-11693
-
-
Liu, Z.M.1
Zhang, N.Q.2
Sun, K.N.3
-
8
-
-
84874092679
-
12 anodes of Li-ion batteries
-
12 anodes of Li-ion batteries. Nanoscale2013, 5, 2100-2106.
-
(2013)
Nanoscale
, vol.5
, pp. 2100-2106
-
-
Zhang, B.1
Yu, Y.2
Liu, Y.S.3
Huang, Z.D.4
He, Y.B.5
Kim, J.K.6
-
10
-
-
84868691832
-
12 for lithium-ion batteries anode
-
12 for lithium-ion batteries anode. J. Power Sources2013, 226, 71-74.
-
(2013)
J. Power Sources
, vol.226
, pp. 71-74
-
-
Lai, C.1
Wu, Z.Z.2
Zhu, Y.X.3
Wu, Q.D.4
Li, L.5
Wang, C.6
-
11
-
-
84881009178
-
12/graphene composite for lithium-ion batteries
-
12/graphene composite for lithium-ion batteries. Electrochim. Acta2013, 109, 33-38.
-
(2013)
Electrochim. Acta
, vol.109
, pp. 33-38
-
-
Guo, X.1
Xiang, H.F.2
Zhou, T.P.3
Li, W.H.4
Wang, X.W.5
Zhou, J.X.6
Yu, Y.7
-
12
-
-
84865769722
-
12 powder via solid-state reaction using very fine grinding media
-
12 powder via solid-state reaction using very fine grinding media. Ceram. Int. 2012, 38, 6963-6968.
-
(2012)
Ceram. Int.
, vol.38
, pp. 6963-6968
-
-
Han, S.W.1
Shin, J.W.2
Yoon, D.H.3
-
14
-
-
59349112236
-
12 and its electrochemical properties
-
12 and its electrochemical properties. J. Alloys Compd. 2009, 470, 544-547.
-
(2009)
J. Alloys Compd.
, vol.470
, pp. 544-547
-
-
Yan, G.F.1
Fang, H.S.2
Zhao, H.J.3
Li, G.S.4
Yang, Y.5
Li, L.P.6
-
15
-
-
84865751862
-
12 compounds synthesized by sol-gel process
-
12 compounds synthesized by sol-gel process. Mater. Chem. Phys. 2011, 131, 431-435.
-
(2011)
Mater. Chem. Phys.
, vol.131
, pp. 431-435
-
-
Long, W.M.1
Wang, X.Y.2
Yang, S.Y.3
Shu, H.B.4
Wu, Q.5
Bai, Y.S.6
Bai, L.7
-
17
-
-
84879054468
-
12/C nano-composite for high-energy lithium-ion batteries
-
12/C nano-composite for high-energy lithium-ion batteries. Solid State Ionics2013, 244, 52-56.
-
(2013)
Solid State Ionics
, vol.244
, pp. 52-56
-
-
Fang, W.1
Cheng, X.Q.2
Zuo, P.J.3
Ma, Y.L.4
Liao, L.X.5
Yin, G.P.6
-
18
-
-
84887214651
-
12 nanosheets stacked by ultrathin nanoflakes for high performance lithium ion batteries
-
12 nanosheets stacked by ultrathin nanoflakes for high performance lithium ion batteries. J. Mater. Chem. A2013, 1, 14618-14626.
-
(2013)
J. Mater. Chem. A
, vol.1
, pp. 14618-14626
-
-
Xiao, L.L.1
Chen, G.2
Sun, J.X.3
Chen, D.H.4
Xu, H.M.5
Zheng, Y.6
-
19
-
-
84872968147
-
12 microsphere with high capacity as anode material for lithium ion batteries
-
12 microsphere with high capacity as anode material for lithium ion batteries. Ceram. Int. 2013, 39, 2695-2698.
-
(2013)
Ceram. Int.
, vol.39
, pp. 2695-2698
-
-
Zhang, Z.W.1
Cao, L.Y.2
Huang, J.F.3
Wang, D.Q.4
Wu, J.P.5
Cai, Y.J.6
-
20
-
-
84877707586
-
12 with improved high rate properties for lithium ion batteries
-
12 with improved high rate properties for lithium ion batteries. Ceram. Int. 2013, 39, 6139-6143.
-
(2013)
Ceram. Int.
, vol.39
, pp. 6139-6143
-
-
Zhang, Z.W.1
Cao, L.Y.2
Huang, J.F.3
Zhou, S.4
Huang, Y.C.5
Cai, Y.J.6
-
21
-
-
69249129485
-
12 hollow microspheres assembled by nanosheets as an anode material for high-rate lithium ion batteries
-
12 hollow microspheres assembled by nanosheets as an anode material for high-rate lithium ion batteries. Electrochim. Acta2009, 54, 6244-6249.
-
(2009)
Electrochim. Acta
, vol.54
, pp. 6244-6249
-
-
Tang, Y.F.1
Yang, L.2
Fang, S.H.3
Qiu, Z.4
-
22
-
-
84878707581
-
Molten salt electrolyte based on alkali bis(fluorosulfonyl)imides for lithium batteries
-
Liu, Y. L.; Zhou, S. S.; Han, H. B.; Li, H.; Nie, J.; Zhou, Z. B.; Chen L. Q.; Huang, X. J. Molten salt electrolyte based on alkali bis(fluorosulfonyl)imides for lithium batteries. Electrochim. Acta2013, 105, 524-529.
-
(2013)
Electrochim. Acta
, vol.105
, pp. 524-529
-
-
Liu, Y.L.1
Zhou, S.S.2
Han, H.B.3
Li, H.4
Nie, J.5
Zhou, Z.B.6
Chen, L.Q.7
Huang, X.J.8
-
23
-
-
84867743586
-
12 (x = 0.0, 0.05 and 0.1) as anodes for Li-ion batteries
-
12 (x = 0. 0, 0. 05 and 0. 1) as anodes for Li-ion batteries. Appl. Surf. Sci. 2012, 261, 515-519.
-
(2012)
Appl. Surf. Sci.
, vol.261
, pp. 515-519
-
-
Nithya, V.D.1
Selvan, R.K.2
Vediappan, K.3
Sharmila, S.4
Lee, C.W.5
-
24
-
-
84881065251
-
12 (x = 0.0, 0.05 and 0.1) as anodes for Li-ion batteries
-
12 (x = 0. 0, 0. 05 and 0. 1) as anodes for Li-ion batteries. J. Phys. Chem. Solids2013, 74, 1515-1521.
-
(2013)
J. Phys. Chem. Solids
, vol.74
, pp. 1515-1521
-
-
Sharmila, S.1
Senthilkumar, B.2
Nithya, V.D.3
Vediappan, K.4
Lee, C.W.5
Selvan, R.K.6
-
25
-
-
84887073454
-
12 by solution ion-exchange of sodium titanate nanotube and evaluation of electrochemical performance
-
12 by solution ion-exchange of sodium titanate nanotube and evaluation of electrochemical performance. J. Nanopart. Res. 2013, 15, 2005.
-
(2013)
J. Nanopart. Res.
, vol.15
, pp. 2005
-
-
Zhang, J.W.1
Zhang, F.L.2
Li, J.H.3
Cai, W.4
Zhang, J.W.5
Yu, L.G.6
Jin, Z.S.7
Zhang, Z.J.8
-
27
-
-
33846565442
-
12 nanowires for high-rate Li-ion intercalation electrode
-
12 nanowires for high-rate Li-ion intercalation electrode. Electrochem. Solid-State Lett. 2007, 10, A81-A84.
-
(2007)
Electrochem. Solid-State Lett.
, vol.10
-
-
Kim, J.1
Cho, J.2
-
31
-
-
84885942091
-
12 nanoplates for lithium-ion batteries with outstanding rate capability and cycling stability
-
12 nanoplates for lithium-ion batteries with outstanding rate capability and cycling stability. J. Mater. Chem. A2013, 1, 13233-13243.
-
(2013)
J. Mater. Chem. A
, vol.1
, pp. 13233-13243
-
-
Sha, Y.J.1
Zhao, B.T.2
Ran, R.3
Cai, R.4
Shao, Z.P.5
-
33
-
-
84880854608
-
12 nanorod aggregates anode in lithium-ion batteries
-
12 nanorod aggregates anode in lithium-ion batteries. J. Power Sources2014, 245, 624-629.
-
(2014)
J. Power Sources
, vol.245
, pp. 624-629
-
-
Wang, W.1
Guo, Y.Y.2
Liu, L.X.3
Wang, S.X.4
Yang, X.J.5
Guo, H.6
-
34
-
-
77955508406
-
12 microspheres for high rate lithium ion batteries
-
12 microspheres for high rate lithium ion batteries. J. Mater. Chem. 2010, 20, 6998-7004.
-
(2010)
J. Mater. Chem.
, vol.20
, pp. 6998-7004
-
-
Shen, L.F.1
Yuan, C.Z.2
Luo, H.J.3
Zhang, X.G.4
Xu, K.5
Xia, Y.Y.6
-
35
-
-
84881091277
-
12 modified with Ag nanoparticles as an advanced anode material in lithium-ion batteries
-
12 modified with Ag nanoparticles as an advanced anode material in lithium-ion batteries. J. Power Sources2014, 245, 764-771.
-
(2014)
J. Power Sources
, vol.245
, pp. 764-771
-
-
Krajewski, M.1
Michalska, M.2
Hamankiewicz, B.3
Ziolkowska, D.4
Korona, K.P.5
Jasinski, J.B.6
Kaminska, M.7
Lipinska, L.8
Czerwinski, A.9
-
37
-
-
84888264847
-
12 nanoparticles embedded in carbon nanofibers as high-capacity and long-life anode materials for both Li-ion and Na-ion batteries
-
12 nanoparticles embedded in carbon nanofibers as high-capacity and long-life anode materials for both Li-ion and Na-ion batteries. Phys. Chem. Chem. Phys. 2013, 15, 20813-20818.
-
(2013)
Phys. Chem. Chem. Phys.
, vol.15
, pp. 20813-20818
-
-
Liu, J.1
Tang, K.2
Song, K.P.3
Aken, P.A.V.4
Yu, Y.5
Maier, J.6
-
39
-
-
79953660835
-
12 as ultra high power anode material for lithium batteries
-
12 as ultra high power anode material for lithium batteries. Energ. Environ. Sci. 2011, 4, 1345-1351.
-
(2011)
Energ. Environ. Sci.
, vol.4
, pp. 1345-1351
-
-
Jung, H.G.1
Myung, S.T.2
Yoon, C.S.3
Son, S.B.4
Oh, K.H.5
Amine, K.6
Scrosati, B.7
Sun, Y.K.8
-
41
-
-
84876488798
-
12 hollow spheres with enhanced lithium storage capability
-
12 hollow spheres with enhanced lithium storage capability. Adv. Mater. 2013, 25, 2296-2300.
-
(2013)
Adv. Mater.
, vol.25
, pp. 2296-2300
-
-
Yu, L.1
Wu, H.B.2
Lou, X.W.3
-
42
-
-
84862801488
-
12 as anode materials for liuthium ion batteries
-
12 as anode materials for liuthium ion batteries. Electrochim. Acta2012, 63, 100-104.
-
(2012)
Electrochim. Acta
, vol.63
, pp. 100-104
-
-
Liu, J.1
Li, X.F.2
Yang, J.L.3
Geng, D.S.4
Li, Y.L.5
Wang, D.N.6
Li, R.Y.7
Sun, X.L.8
Cai, M.9
Verbrugge, M.W.10
-
43
-
-
84876155687
-
Synthesis and microwave absorption properties of yolk-shell microspheres with magnetic iron oxide cores and hierarchical copper silicate shells
-
Liu, J. W.; Cheng, J.; Che, R. C.; Xu, J. J.; Liu, M. M.; Liu, Z. W. Synthesis and microwave absorption properties of yolk-shell microspheres with magnetic iron oxide cores and hierarchical copper silicate shells. ACS Appl. Mater. Inter. 2013, 5, 2503-2509.
-
(2013)
ACS Appl. Mater. Inter.
, vol.5
, pp. 2503-2509
-
-
Liu, J.W.1
Cheng, J.2
Che, R.C.3
Xu, J.J.4
Liu, M.M.5
Liu, Z.W.6
-
44
-
-
84859842307
-
2 shells
-
2 shells. Small2012, 8, 1214-1221.
-
(2012)
Small
, vol.8
, pp. 1214-1221
-
-
Liu, J.W.1
Che, R.C.2
Chen, H.J.3
Zhang, F.4
Xia, F.5
Wu, Q.S.6
Wang, M.7
-
45
-
-
84872425158
-
2 double shells as high-performance microwave absorbers
-
2 double shells as high-performance microwave absorbers. J. Phys. Chem. C2013, 117, 489-495.
-
(2013)
J. Phys. Chem. C
, vol.117
, pp. 489-495
-
-
Liu, J.W.1
Cheng, J.2
Che, R.C.3
Xu, J.J.4
Liu, M.M.5
Liu, Z.W.6
-
46
-
-
79959789066
-
Synthesis of titania embedded silica hollow nanospheres via sonicationmediated etching and re-deposition
-
Choi, M.; Kim, C.; Jeon, S. Ok.; Yook, K. Soo.; Lee, J. Y.; Jang, J. Synthesis of titania embedded silica hollow nanospheres via sonicationmediated etching and re-deposition. Chem. Commun. 2011, 47, 7092-7094.
-
(2011)
Chem. Commun.
, vol.47
, pp. 7092-7094
-
-
Choi, M.1
Kim, C.2
Jeon, S.O.3
Yook, K.S.4
Lee, J.Y.5
Jang, J.6
-
48
-
-
70449589904
-
5 nanotubed for energy storage materials
-
5 nanotubed for energy storage materials. J. Phys. Chem. C2009, 113, 18420-18423.
-
(2009)
J. Phys. Chem. C
, vol.113
, pp. 18420-18423
-
-
Lee, S.C.1
Lee, S.M.2
Lee, J.W.3
Lee, J.B.4
Lee, S.M.5
Han, S.S.6
Lee, H.C.7
Kim, H.J.8
-
50
-
-
84863699724
-
12 nanoparticles embedded in a mesoporous carbon matrix as a superior anode material for high rate lithium ion batteries
-
12 nanoparticles embedded in a mesoporous carbon matrix as a superior anode material for high rate lithium ion batteries. Adv. Energy Mater. 2012, 2, 691-698.
-
(2012)
Adv. Energy Mater.
, vol.2
, pp. 691-698
-
-
Shen, L.F.1
Zhang, X.G.2
Uchaker, E.3
Yuan, C.Z.4
Cao, G.Z.5
-
51
-
-
84862784048
-
12 synthesized in a reverse micelle: A bridge between pseudocapacitor and lithium ion battery
-
12 synthesized in a reverse micelle: A bridge between pseudocapacitor and lithium ion battery. Electrochim. Acta2012, 68, 254-259.
-
(2012)
Electrochim. Acta
, vol.68
, pp. 254-259
-
-
Wang, W.1
Tu, J.G.2
Wang, S.B.3
Hou, J.G.4
Zhu, H.M.5
Jiao, S.Q.6
-
52
-
-
80053955090
-
12 nanoparticles and their electrochemical and biocompatible superiority for lithium rechargeable batteries
-
12 nanoparticles and their electrochemical and biocompatible superiority for lithium rechargeable batteries. Chem. Commun. 2011, 47, 11474-11476.
-
(2011)
Chem. Commun.
, vol.47
, pp. 11474-11476
-
-
Jo, M.R.1
Nam, K.M.2
Lee, Y.3
Song, K.4
Park, J.T.5
Kang, Y.M.6
|