메뉴 건너뛰기




Volumn 26, Issue 3, 2014, Pages 215-243

Improving feature ranking for biomarker discovery in proteomics mass spectrometry data using genetic programming

Author keywords

biomarker discovery; classification; feature selection; genetic programming

Indexed keywords

CLASSIFICATION (OF INFORMATION); DECISION TREES; FEATURE EXTRACTION; GENETIC PROGRAMMING; MASS SPECTROMETRY; MOLECULAR BIOLOGY;

EID: 84904575736     PISSN: 09540091     EISSN: 13600494     Source Type: Journal    
DOI: 10.1080/09540091.2014.906388     Document Type: Article
Times cited : (21)

References (58)
  • 1
    • 33745753110 scopus 로고    scopus 로고
    • The role of mass spectrometry in biomarker discovery and measurement
    • Ackermann, B. L., Hale, J. E., & Duffin, K. L. (2006). The role of mass spectrometry in biomarker discovery and measurement. Current Drug Metabolism, 7(5), 525-539. doi: 10.2174/138920006777697918
    • (2006) Current Drug Metabolism , vol.7 , Issue.5 , pp. 525-539
    • Ackermann, B.L.1    Hale, J.E.2    Duffin, K.L.3
  • 5
    • 0141855279 scopus 로고    scopus 로고
    • A comprehensive approach to the analysis of matrix-assisted laser desorption/ionization-time of flight proteomics spectra from serum samples
    • Baggerly, K., Morris, J., Wang, J., Gold, D., Xiao, L., & Coombes, K. (2003). A comprehensive approach to the analysis of matrix-assisted laser desorption/ionization-time of flight proteomics spectra from serum samples. Proteomics, 3(9), 1667-72. doi: 10.1002/pmic.200300522
    • (2003) Proteomics , vol.3 , Issue.9 , pp. 1667-1672
    • Baggerly, K.1    Morris, J.2    Wang, J.3    Gold, D.4    Xiao, L.5    Coombes, K.6
  • 8
    • 22344451035 scopus 로고    scopus 로고
    • MBEToolbox: A Matlab toolbox for sequence data analysis in molecular biology and evolution
    • Cai, J., Smith, D., Xia, X., & Yuen, K. y. (2005). MBEToolbox: A Matlab toolbox for sequence data analysis in molecular biology and evolution. BMC Bioinformatics, 6(1), 64-72. doi: 10.1186/1471-2105-6-64
    • (2005) BMC Bioinformatics , vol.6 , Issue.1 , pp. 64-72
    • Cai, J.1    Smith, D.2    Xia, X.3    Yuen, K.Y.4
  • 11
    • 32044450752 scopus 로고    scopus 로고
    • Classification of gene expression data with genetic programming
    • In: Riolo R. L., Worzel B., editors Boston, Boston,: Kluwer
    • Driscoll, J. A., Worzel, B., & MacLean, D. (2003). Classification of gene expression data with genetic programming. In R. L. Riolo and B. Worzel (Eds.), Genetic programming theory and practice (Chapter 3, pp. 25-42). Boston: Kluwer.
    • (2003) Genetic programming theory and practice , pp. 25-42
    • Driscoll, J.A.1    Worzel, B.2    MacLean, D.3
  • 12
    • 33745628826 scopus 로고    scopus 로고
    • Linear genetic programming for multi-class object classification
    • Lecture Notes in Computer Science,: Springer, Berlin, Berlin
    • Fogelberg, C., & Zhang, M. (2005). Linear genetic programming for multi-class object classification. AI 2005: Advances in artificial intelligence, Lecture Notes in Computer Science, Vol. 3809 (pp. 369-379). Springer Berlin.
    • (2005) AI 2005: Advances in artificial intelligence , vol.3809 , pp. 369-379
    • Fogelberg, C.1    Zhang, M.2
  • 13
    • 46149101211 scopus 로고    scopus 로고
    • Classification of premalignant pancreatic cancer mass-spectrometry data using decision tree ensembles
    • Ge, G., & Wong, G. W. (2008). Classification of premalignant pancreatic cancer mass-spectrometry data using decision tree ensembles. BMC Bioinformatics, 9(1), 275-287. doi: 10.1186/1471-2105-9-275
    • (2008) BMC Bioinformatics , vol.9 , Issue.1 , pp. 275-287
    • Ge, G.1    Wong, G.W.2
  • 14
    • 0000384929 scopus 로고    scopus 로고
    • Genetic programming: A novel method for the quantitative analysis of pyrolysis mass spectral data
    • Gilbert, R. J., Goodacre, R., Woodward, A. M., & Kell, D. B. (1997). Genetic programming: A novel method for the quantitative analysis of pyrolysis mass spectral data. Analytical Chemistry, 69(21), 4381-4389. doi: 10.1021/ac970460j
    • (1997) Analytical Chemistry , vol.69 , Issue.21 , pp. 4381-4389
    • Gilbert, R.J.1    Goodacre, R.2    Woodward, A.M.3    Kell, D.B.4
  • 15
    • 0002763902 scopus 로고    scopus 로고
    • Genetic programming as an analytical tool for metabolome data
    • In: Langdon W. B., Poli R., Nordin P., Fogarty T., editors Göteborg, Sweden, Göteborg,: Springer
    • Gilbert, R. J., Johnson, H. E., Winson, M. K., Rowland, J. J., Goodacre, R., Smith, A. R., Kell, D. B. (1999). Genetic programming as an analytical tool for metabolome data. In W. B. Langdon, R. Poli, P. Nordin, T. Fogarty (Eds.), Late-Breaking Papers of EuroGP-99 (pp. 23-33). Göteborg, Sweden: Springer.
    • (1999) Late-Breaking Papers of EuroGP-99 , pp. 23-33
    • Gilbert, R.J.1    Johnson, H.E.2    Winson, M.K.3    Rowland, J.J.4    Goodacre, R.5    Smith, A.R.6    Kell, D.B.7
  • 16
    • 0000062803 scopus 로고    scopus 로고
    • Genomic computing: Explanatory modelling for functional genomics
    • In: Whitley L. D., Goldberg D. E., CantPaz E., Spector L., Parmee I. C., Beyer H. G., editors Las Vegas, Las Vegas,: Morgan Kaufmann
    • Gilbert, R. J., Rowland, J. J., & Kell, D. B. (2000). Genomic computing: Explanatory modelling for functional genomics. In L. D. Whitley, D. E. Goldberg, E. CantPaz, L. Spector, I. C. Parmee & H. G. Beyer (Eds.) Proceedings of genetic and evolutionary computation (GECCO) (pp. 551-557). Las Vegas: Morgan Kaufmann.
    • (2000) Proceedings of genetic and evolutionary computation (GECCO) , pp. 551-557
    • Gilbert, R.J.1    Rowland, J.J.2    Kell, D.B.3
  • 17
    • 84875117583 scopus 로고    scopus 로고
    • Multiple threshold spatially uniform ReliefF for the genetic analysis of complex human diseases
    • In: Vanneschi L., Bush W. S., Giacobini M., editors EvoBIO 2013, Vienna, Austria, April 3-5, 2013. Proceedings, Lecture Notes in Computer Science, Vienna, Austria, Springer
    • Granizo-MacKenzie, D., & Moore, J. H. (2013). Multiple threshold spatially uniform ReliefF for the genetic analysis of complex human diseases. In L. Vanneschi, W. S. Bush, & M. Giacobini (Eds.), Evolutionary computation, machine learning and data mining in bioinformatics - 11th European Conference, EvoBIO 2013, Vienna, Austria, April 3-5, 2013. Proceedings, Lecture Notes in Computer Science, Vol. 7833, Vienna, Austria, pp. 1-10, Springer.
    • (2013) Evolutionary computation, machine learning and data mining in bioinformatics - 11th European Conference , vol.7833 , pp. 1-10
    • Granizo-MacKenzie, D.1    Moore, J.H.2
  • 18
    • 38349045395 scopus 로고    scopus 로고
    • An expert knowledge-guided mutation operator for genome-wide genetic analysis using genetic programming
    • In: Rajapakse J., Schmidt B., Volkert G., editors Berlin, Berlin,: Springer
    • Greene, C., White, B., & Moore, J. (2007). An expert knowledge-guided mutation operator for genome-wide genetic analysis using genetic programming. In J. Rajapakse, B. Schmidt, & G. Volkert (Eds.), Lecture notes in Bioinfromatics Vol. 4774. (pp. 30-40). Berlin: Springer.
    • (2007) Lecture notes in Bioinfromatics , vol.4774 , pp. 30-40
    • Greene, C.1    White, B.2    Moore, J.3
  • 19
    • 69449098752 scopus 로고    scopus 로고
    • Sensible initialization using expert knowledge for genome-wide analysis of epistasis using genetic programming
    • Trondheim, Norway, Trondheim
    • Greene, C., White, B., & Moore, J. (2009). Sensible initialization using expert knowledge for genome-wide analysis of epistasis using genetic programming. IEEE Congress on evolutionary computation, 2009. CEC '09, Trondheim, Norway. pp. 1289-1296.
    • (2009) IEEE Congress on evolutionary computation, 2009. CEC '09 , pp. 1289-1296
    • Greene, C.1    White, B.2    Moore, J.3
  • 23
    • 84862316959 scopus 로고    scopus 로고
    • msCompare: A framework for quantitative analysis of label-free LC-MS data for comparative candidate biomarker studies
    • M111.015974
    • Hoekman, B., Breitling, R., Suits, F., Bischoff, R., & Horvatovich, P. (2012). msCompare: A framework for quantitative analysis of label-free LC-MS data for comparative candidate biomarker studies. Mol Cell Proteomics, 11(6), M111.015974. doi: 10.1074/mcp.M111.015974
    • (2012) Mol Cell Proteomics , vol.11 , Issue.6
    • Hoekman, B.1    Breitling, R.2    Suits, F.3    Bischoff, R.4    Horvatovich, P.5
  • 24
    • 26944491706 scopus 로고    scopus 로고
    • Lymphoma cancer classification using genetic programming with SNR features
    • In: Keijzer M., OReilly U. M., Lucas S., Costa E., Soule T., editors Berlin, Berlin,: Springer
    • Hong, J. H., & Cho, S. B. (2004). Lymphoma cancer classification using genetic programming with SNR features. In M. Keijzer, U. M. OReilly, S. Lucas, E. Costa, & T. Soule (Eds.), Proceedings of the genetic programming European conference Vol. 3003. (pp. 78-88). Berlin: Springer.
    • (2004) Proceedings of the genetic programming European conference , vol.3003 , pp. 78-88
    • Hong, J.H.1    Cho, S.B.2
  • 25
    • 84875654352 scopus 로고    scopus 로고
    • Research and applications: An information-gain approach to detecting three-way epistatic interactions in genetic association studies
    • Hu, T., Chen, Y. P., Kiralis, J., Collins, R. L., Wejse, C., Sirugo, G., Williams, S. M., and Moore, J. H. (2013). Research and applications: An information-gain approach to detecting three-way epistatic interactions in genetic association studies. JAMIA, 20(4), 630-636.
    • (2013) JAMIA , vol.20 , Issue.4 , pp. 630-636
    • Hu, T.1    Chen, Y.P.2    Kiralis, J.3    Collins, R.L.4    Wejse, C.5    Sirugo, G.6    Williams, S.M.7    Moore, J.H.8
  • 26
    • 0036042222 scopus 로고    scopus 로고
    • Metabolomics and machine learning: Explanatory analysis of complex metabolome data using genetic programming to produce simple, robust rules
    • Kell, D. B. (2002). Metabolomics and machine learning: Explanatory analysis of complex metabolome data using genetic programming to produce simple, robust rules. Molecular Biology Reports, 29(1-2), 237-241. doi: 10.1023/A:1020342216314
    • (2002) Molecular Biology Reports , vol.29 , Issue.1-2 , pp. 237-241
    • Kell, D.B.1
  • 27
    • 84992726552 scopus 로고
    • Estimating attributes: Analysis and extensions of RELIEF
    • In: Bergadano F., Raedt L.D., editors Catania, Italy, Catania,: Springer
    • Kononenko, I. (1994). Estimating attributes: Analysis and extensions of RELIEF. In: Bergadano, F. & Raedt, L.D. (Eds.), European conference on machine learning (pp. 171-182). Catania, Italy: Springer.
    • (1994) European conference on machine learning , pp. 171-182
    • Kononenko, I.1
  • 30
    • 77951623830 scopus 로고    scopus 로고
    • Integrating high-throughput technologies in the quest for effective biomarkers for ovarian cancer
    • Kulasingam, V., Pavlou, M.P., & Diamandis, E.P. (2010). Integrating high-throughput technologies in the quest for effective biomarkers for ovarian cancer. Nature reviews. Cancer, 10(5), 371-378. doi: 10.1038/nrc2831
    • (2010) Nature reviews. Cancer , vol.10 , Issue.5 , pp. 371-378
    • Kulasingam, V.1    Pavlou, M.P.2    Diamandis, E.P.3
  • 31
    • 17844394177 scopus 로고    scopus 로고
    • Statistical and computational methods for comparative proteomic profiling using liquid chromatography-tandem mass spectrometry
    • Listgarten, J., & Emili, A. (2005). Statistical and computational methods for comparative proteomic profiling using liquid chromatography-tandem mass spectrometry. Molecular & Cellular Proteomics, 4, 419-434. doi: 10.1074/mcp.R500005-MCP200
    • (2005) Molecular & Cellular Proteomics , vol.4 , pp. 419-434
    • Listgarten, J.1    Emili, A.2
  • 32
    • 33846651082 scopus 로고    scopus 로고
    • Difference detection in LC-MS data for protein biomarker discovery
    • Listgarten, J., Neal, R. M., Roweis, S. T., Wong, P., & Emili, A. (2007). Difference detection in LC-MS data for protein biomarker discovery. Bioinformatics, 23(2), 198-204. doi: 10.1093/bioinformatics/btl326
    • (2007) Bioinformatics , vol.23 , Issue.2 , pp. 198-204
    • Listgarten, J.1    Neal, R.M.2    Roweis, S.T.3    Wong, P.4    Emili, A.5
  • 34
    • 0003602164 scopus 로고    scopus 로고
    • Feature extraction, construction and selection: A data mining perspective
    • Kluwer Acad. Publ. ISBN: 978-1-4615-5725-8
    • Liu, L., & Motoda, H. (1998). Feature extraction, construction and selection: A data mining perspective, The International Series in Engineering and Computer Science Series, Kluwer Acad. Publ. ISBN: 978-1-4615-5725-8
    • (1998) The International Series in Engineering and Computer Science Series
    • Liu, L.1    Motoda, H.2
  • 36
    • 84877302617 scopus 로고    scopus 로고
    • The limits of p-values for biological data mining
    • Malley, J. D., Dasgupta, A., & Moore, J. H. (2013). The limits of p-values for biological data mining. BioData Mining, 6, 10-12. doi: 10.1186/1756-0381-6-10
    • (2013) BioData Mining , vol.6 , pp. 10-12
    • Malley, J.D.1    Dasgupta, A.2    Moore, J.H.3
  • 37
    • 0003971926 scopus 로고    scopus 로고
    • CRC Monographs on Statistics and Applied Probability Series, 2nd ed., Chapman and Hall, Chapman and Hall,: Taylor & Francis Group
    • Miller, A. (2002). Subset selection in regression, CRC Monographs on Statistics and Applied Probability Series, 2nd ed., Chapman and Hall: Taylor & Francis Group.
    • (2002) Subset selection in regression
    • Miller, A.1
  • 39
    • 78650429699 scopus 로고    scopus 로고
    • Unsupervised elimination of redundant features using genetic programming
    • Mulborne, Australia, Mulborne
    • Neshatian, K., & Zhang, M. (2009). Unsupervised elimination of redundant features using genetic programming. Australasian conference on artificial intelligence, Mulborne, Australia, pp. 432-442.
    • (2009) Australasian conference on artificial intelligence , pp. 432-442
    • Neshatian, K.1    Zhang, M.2
  • 41
    • 74649087307 scopus 로고    scopus 로고
    • A novel feature selection approach for biomedical data classification
    • Peng, Y., Wu, Z., & Jiang, J. (2010). A novel feature selection approach for biomedical data classification. Journal of Biomedical Informatics, 43(1), 15-23. doi: 10.1016/j.jbi.2009.07.008
    • (2010) Journal of Biomedical Informatics , vol.43 , Issue.1 , pp. 15-23
    • Peng, Y.1    Wu, Z.2    Jiang, J.3
  • 44
    • 33745624543 scopus 로고    scopus 로고
    • Label-free semiquantitative peptide feature profiling of human breast cancer and breast disease sera via two-dimensional liquid chromatography-mass spectrometry
    • June
    • Ru, Q.C., Zhu, L. A., Silberman, J., & Shriver, C. D. (June 2006). Label-free semiquantitative peptide feature profiling of human breast cancer and breast disease sera via two-dimensional liquid chromatography-mass spectrometry. Molecular and Cellular Proteomics, 5(6), 1095-1104. doi: 10.1074/mcp.M500387-MCP200
    • (2006) Molecular and Cellular Proteomics , vol.5 , Issue.6 , pp. 1095-1104
    • Ru, Q.C.1    Zhu, L.A.2    Silberman, J.3    Shriver, C.D.4
  • 46
    • 10244239405 scopus 로고    scopus 로고
    • Standardization and denoising algorithms for mass spectra to classify whole-organism bacterial specimens
    • Satten, G. A., Datta, S., Moura, H., Woolfitt, A. R., Carvalho, M. d. G., Carlone, G. M., De, B. K., Pavlopoulos, A., & Barr, J. R. (2004). Standardization and denoising algorithms for mass spectra to classify whole-organism bacterial specimens. Bioinformatics, 20(17), 3128-3136. doi: 10.1093/bioinformatics/bth372
    • (2004) Bioinformatics , vol.20 , Issue.17 , pp. 3128-3136
    • Satten, G.A.1    Datta, S.2    Moura, H.3    Woolfitt, A.R.4    Carvalho, M.D.G.5    Carlone, G.M.6    De, B.K.7    Pavlopoulos, A.8    Barr, J.R.9
  • 47
    • 0002442796 scopus 로고    scopus 로고
    • Machine learning in automated text categorization
    • Sebastiani, F., & Ricerche, C. N. D. (2002). Machine learning in automated text categorization. ACM Computing Surveys, 34, 1-47. doi: 10.1145/505282.505283
    • (2002) ACM Computing Surveys , vol.34 , pp. 1-47
    • Sebastiani, F.1    Ricerche, C.N.D.2
  • 48
    • 0347181849 scopus 로고    scopus 로고
    • A data review and re-assessment of ovarian cancer serum proteomic profiling
    • Sorace, J., & Zhan, M. (2003). A data review and re-assessment of ovarian cancer serum proteomic profiling. BMC Bioinformatics, 4(1), 24-37. doi: 10.1186/1471-2105-4-24
    • (2003) BMC Bioinformatics , vol.4 , Issue.1 , pp. 24-37
    • Sorace, J.1    Zhan, M.2
  • 51
    • 66249119022 scopus 로고    scopus 로고
    • Application of multiple statistical tests to enhance mass spectrometry-based biomarker discovery
    • Tan, N. C., Fisher, W. G., Rosenblatt, K. P., & Garner, H. R. (2009). Application of multiple statistical tests to enhance mass spectrometry-based biomarker discovery. BMC Bioinformatics, 10-22.
    • (2009) BMC Bioinformatics , pp. 10-22
    • Tan, N.C.1    Fisher, W.G.2    Rosenblatt, K.P.3    Garner, H.R.4
  • 52
    • 84857412355 scopus 로고    scopus 로고
    • Using a spike-in experiment to evaluate analysis of LC-MS data
    • Tuli, L., Tsai, T. H., Varghese, R., Xiao, J. F., Cheema, A., & Ressom, H. (2012). Using a spike-in experiment to evaluate analysis of LC-MS data. Proteome Science, 10, 10-23. doi: 10.1186/1477-5956-10-13
    • (2012) Proteome Science , vol.10 , pp. 10-23
    • Tuli, L.1    Tsai, T.H.2    Varghese, R.3    Xiao, J.F.4    Cheema, A.5    Ressom, H.6
  • 55
    • 84861087001 scopus 로고    scopus 로고
    • Software review: The ECJ toolkit
    • White, D. R. (2012). Software review: The ECJ toolkit. Genetic Programming and Evolvable machines, 13(1), 65-77. doi: 10.1007/s10710-011-9148-z
    • (2012) Genetic Programming and Evolvable machines , vol.13 , Issue.1 , pp. 65-77
    • White, D.R.1
  • 56
    • 0141738784 scopus 로고    scopus 로고
    • Comparison of statistical methods for classification of ovarian cancer using mass spectrometry data
    • Wu, B., Abbott, T., Fishman, D., McMurray, W., Mor, G., Stone, K., Ward, D., Williams, K., Zhao, H. (2003). Comparison of statistical methods for classification of ovarian cancer using mass spectrometry data. Bioinformatics, 19(13), 1636-1643. doi: 10.1093/bioinformatics/btg210
    • (2003) Bioinformatics , vol.19 , Issue.13 , pp. 1636-1643
    • Wu, B.1    Abbott, T.2    Fishman, D.3    McMurray, W.4    Mor, G.5    Stone, K.6    Ward, D.7    Williams, K.8    Zhao, H.9
  • 57
    • 34247214462 scopus 로고    scopus 로고
    • Feature selection and molecular classification of cancer using genetic programming
    • Yu, J., Yu, J., Almal, A. A., Dhanasekaran, S. M., Ghosh, D., Worzel, W. P., Chinnaiyan, A. M. (2007). Feature selection and molecular classification of cancer using genetic programming. Neoplasia, 9(4), 292-303. doi: 10.1593/neo.07121
    • (2007) Neoplasia , vol.9 , Issue.4 , pp. 292-303
    • Yu, J.1    Yu, J.2    Almal, A.A.3    Dhanasekaran, S.M.4    Ghosh, D.5    Worzel, W.P.6    Chinnaiyan, A.M.7
  • 58
    • 84856118098 scopus 로고    scopus 로고
    • Esophageal cancer metabolite biomarkers detected by LC-MS and NMR methods
    • Zhang, J., Bowers, J., Liu, L., Wei, S., Gowda, G. A. N., Hammoud, Z., & Raftery, D. (2012). Esophageal cancer metabolite biomarkers detected by LC-MS and NMR methods. PLoS ONE, 7(1), e30181.
    • (2012) PLoS ONE , vol.7 , Issue.1
    • Zhang, J.1    Bowers, J.2    Liu, L.3    Wei, S.4    Gowda, G.A.N.5    Hammoud, Z.6    Raftery, D.7


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.