메뉴 건너뛰기




Volumn 9, Issue 7, 2014, Pages

Effective automated feature construction and selection for classification of biological sequences

Author keywords

[No Author keywords available]

Indexed keywords

DNA; RNA SPLICING;

EID: 84904490572     PISSN: None     EISSN: 19326203     Source Type: Journal    
DOI: 10.1371/journal.pone.0099982     Document Type: Article
Times cited : (53)

References (121)
  • 1
    • 84878732125 scopus 로고    scopus 로고
    • An integrated encyclopedia of DNA elements in the human genome
    • ENCODE Consortium
    • ENCODE Consortium (2012) An integrated encyclopedia of DNA elements in the human genome. Nature 489: 457-74.
    • (2012) Nature , vol.489 , pp. 457-474
  • 2
    • 0041620262 scopus 로고    scopus 로고
    • GlimmerM, Exonomy and Unveil: Three ab initio eukaryotic genefinders
    • DOI 10.1093/nar/gkg527
    • Majoros WH, Pertea M, Antonescu C, Salzberg SL (2003) GlimmerM, Exonomy and Unveil: three ab initio eukaryotic genefinders. Nucl Acids Res 31: 3601-3604. (Pubitemid 37442206)
    • (2003) Nucleic Acids Research , vol.31 , Issue.13 , pp. 3601-3604
    • Majoros, W.H.1    Pertea, M.2    Antonescu, C.3    Salzberg, S.L.4
  • 3
    • 84904515535 scopus 로고    scopus 로고
    • Performance assessment of promoter predictions on ENCODE regions in the EGASP experiment
    • Bajic V, Brent M, Brown R, Frankish A, Harrow J, et al. (2006) Performance assessment of promoter predictions on ENCODE regions in the EGASP experiment. Genome Biology 489: 457-474.
    • (2006) Genome Biology , vol.489 , pp. 457-474
    • Bajic, V.1    Brent, M.2    Brown, R.3    Frankish, A.4    Harrow, J.5
  • 4
    • 0036796369 scopus 로고    scopus 로고
    • Current methods of gene prediction, their strengths and weaknesses
    • Mathé C, Sagot MF, Schiex T, Rouzé P (2002) Current methods of gene prediction, their strengths and weaknesses. Nucl Acids Res 30: 4103-4117.
    • (2002) Nucl Acids Res , vol.30 , pp. 4103-4117
    • Mathé, C.1    Sagot, M.F.2    Schiex, T.3    Rouzé, P.4
  • 5
    • 84865859048 scopus 로고    scopus 로고
    • What does our genome encode?
    • Stamatoyannopoulos JA (2012) What does our genome encode? Genome Res 22: 1602-1611.
    • (2012) Genome Res , vol.22 , pp. 1602-1611
    • Stamatoyannopoulos, J.A.1
  • 6
    • 0031586003 scopus 로고    scopus 로고
    • Prediction of complete gene structures in human genomic DNA
    • DOI 10.1006/jmbi.1997.0951
    • Burge C, Karlin S (1997) Prediction of complete gene structures in human genomic DNA. J Mol Biol 268: 78-94. (Pubitemid 27192680)
    • (1997) Journal of Molecular Biology , vol.268 , Issue.1 , pp. 78-94
    • Burge, C.1    Karlin, S.2
  • 7
    • 0035282695 scopus 로고    scopus 로고
    • GeneSplicer: A new computational method for splice site prediction
    • Pertea M, Lin X, Salzberg SL (2001) Genesplicer: a new computational method for splice site prediction. Nucl Acids Res 29: 1185-1190. (Pubitemid 32186204)
    • (2001) Nucleic Acids Research , vol.29 , Issue.5 , pp. 1185-1190
    • Pertea, M.1    Lin, X.2    Salzberg, S.L.3
  • 8
    • 0036364398 scopus 로고    scopus 로고
    • DNA splice site detection: A comparison of specific and general methods
    • Kim W, Wilbur WJ (2002) DNA splice site detection: a comparison of specific and general methods. In: AMIA Symp. pp. 390-394.
    • (2002) AMIA Symp. , pp. 390-394
    • Kim, W.1    Wilbur, W.J.2
  • 11
    • 2442441507 scopus 로고    scopus 로고
    • Maximum entropy modeling of short sequence motifs with applications to RNA splicing signals
    • Yeo G (2004) Maximum entropy modeling of short sequence motifs with applications to RNA splicing signals. J Comp Biol 11: 377-394.
    • (2004) J Comp Biol , vol.11 , pp. 377-394
    • Yeo, G.1
  • 14
    • 36248948082 scopus 로고    scopus 로고
    • Features generated for computational splice-site prediction correspond to functional elements
    • Islamaj-Dogan R, Getoor L, Wilbur WJ, Mount SM (2007) Features generated for computational splice-site prediction correspond to functional elements. BMC Bioinformatics 8: 410-416.
    • (2007) BMC Bioinformatics , vol.8 , pp. 410-416
    • Islamaj-Dogan, R.1    Getoor, L.2    Wilbur, W.J.3    Mount, S.M.4
  • 15
    • 79959423743 scopus 로고    scopus 로고
    • Using evolutionary computation to improve SVM classification
    • Barcelona, Spain: IEEE
    • Kamath U, Shehu A, De Jong KA (2010) Using evolutionary computation to improve SVM classification. In: WCCI: IEEE World Conf. Comp. Intel. Barcelona, Spain: IEEE, pp. 1-8.
    • (2010) WCCI: IEEE World Conf. Comp. Intel. , pp. 1-8
    • Kamath, U.1    Shehu, A.2    De Jong, K.A.3
  • 16
    • 84864925579 scopus 로고    scopus 로고
    • An evolutionary algorithm approach for feature generation from sequence data and its application to dna splice-site prediction
    • Kamath U, Compton J, Islamaj Dogan R, De Jong KA, Shehu A (2012) An evolutionary algorithm approach for feature generation from sequence data and its application to dna splice-site prediction. IEEE Trans Comp Biol and Bioinf 9: 1387-1398.
    • (2012) IEEE Trans Comp Biol and Bioinf , vol.9 , pp. 1387-1398
    • Kamath, U.1    Compton, J.2    Islamaj Dogan, R.3    De Jong, K.A.4    Shehu, A.5
  • 18
    • 33745152719 scopus 로고    scopus 로고
    • Genome-wide computational prediction of transcriptional regulatory modules reveals new insights into human gene expression
    • Blanchette M, Bataille AR, Chen X, Poitras C, Laganiere J, et al. (2006) Genome-wide computational prediction of transcriptional regulatory modules reveals new insights into human gene expression. Genome Res 16: 656-668.
    • (2006) Genome Res , vol.16 , pp. 656-668
    • Blanchette, M.1    Bataille, A.R.2    Chen, X.3    Poitras, C.4    Laganiere, J.5
  • 19
    • 0037115891 scopus 로고    scopus 로고
    • Discovery of novel transcription factor binding sites by statistical overrepresentation
    • DOI 10.1093/nar/gkf669
    • Sinha S, Tompa M (2002) Discovery of novel transcription factor binding sites by statistical overrepresentation. Nucl Acids Res 30: 5549-5560. (Pubitemid 36113932)
    • (2002) Nucleic Acids Research , vol.30 , Issue.24 , pp. 5549-5560
    • Sinha, S.1    Tompa, M.2
  • 22
    • 0019303186 scopus 로고
    • The 50′ ends of drosophila heat shock genes in chromatin are hypersensitive to DNase I
    • Wu C (1980) The 50′ ends of drosophila heat shock genes in chromatin are hypersensitive to DNase I. Nature 286: 854-860.
    • (1980) Nature , vol.286 , pp. 854-860
    • Wu, C.1
  • 23
    • 0023899769 scopus 로고
    • Nuclear hypersensitive sites in chromatin
    • Gross DS, Garrard WT (1988) Nuclear hypersensitive sites in chromatin. Annu Rev Biochem 57: 159-197.
    • (1988) Annu Rev Biochem , vol.57 , pp. 159-197
    • Gross, D.S.1    Garrard, W.T.2
  • 24
    • 0026516916 scopus 로고
    • Mechanism of DNase I hypersensitive site formation within the human globin locus control region
    • Lowrey CH, Bodine DM, Nienhuis AW (1992) Mechanism of DNase I hypersensitive site formation within the human globin locus control region. Proc Natl Acad Sci USA 89: 1143-1147.
    • (1992) Proc Natl Acad Sci USA , vol.89 , pp. 1143-1147
    • Lowrey, C.H.1    Bodine, D.M.2    Nienhuis, A.W.3
  • 25
    • 29144460132 scopus 로고    scopus 로고
    • Predicting the in vivo signature of human gene regulatory sequences
    • DOI 10.1093/bioinformatics/bti1047
    • Noble WS, Kuehn S, Thurman R, Yu M, Stamatoyannopoulos JA (2005) Predicting the in vivo signature of human gene regulatory sequences. Bioinformatics 21: i338-i343. (Pubitemid 41794506)
    • (2005) Bioinformatics , vol.21 , Issue.SUPPL. 1
    • Noble, W.S.1    Kuehn, S.2    Thurman, R.3    Yu, M.4    Stamatoyannopoulos, J.5
  • 26
    • 77955874036 scopus 로고    scopus 로고
    • Selecting predictive features for recognition of hypersensitive sites of regulatory genomic sequences with an evolutionary algorithm
    • New York, NY, USA: ACM
    • Kamath U, De Jong KA, Shehu A (2010) Selecting predictive features for recognition of hypersensitive sites of regulatory genomic sequences with an evolutionary algorithm. In: GECCO: Gen. Evol. Comp. Conf. New York, NY, USA: ACM, pp. 179-186.
    • (2010) GECCO: Gen. Evol. Comp. Conf. , pp. 179-186
    • Kamath, U.1    De Jong, K.A.2    Shehu, A.3
  • 28
    • 79959278168 scopus 로고    scopus 로고
    • A two-stage evolutionary approach for effective classification of hypersensitive dna sequences
    • Kamath U, Shehu A, De Jong KA (2011) A two-stage evolutionary approach for effective classification of hypersensitive dna sequences. J Bioinf & Comp Biol 9: 399-413.
    • (2011) J Bioinf & Comp Biol , vol.9 , pp. 399-413
    • Kamath, U.1    Shehu, A.2    De Jong, K.A.3
  • 29
    • 0027163832 scopus 로고
    • A new subfamily of recently retroposed human alu repeats
    • Jurka J (1993) A new subfamily of recently retroposed human alu repeats. Nucl Acids Res 21: 2252.
    • (1993) Nucl Acids Res , vol.21 , pp. 2252
    • Jurka, J.1
  • 32
    • 84855199454 scopus 로고    scopus 로고
    • Alu elements: Know the SINEs
    • Deininger P (2011) Alu elements: know the SINEs. Genome Biol 12: 236-249.
    • (2011) Genome Biol , vol.12 , pp. 236-249
    • Deininger, P.1
  • 33
    • 84855820723 scopus 로고    scopus 로고
    • Artificial neural networks and support vector machine identify alu elements as being associated with human housekeeping genes
    • doi:10.1109/BMEI.2011.6098522
    • Dharmasaroja P (2011) Artificial neural networks and support vector machine identify alu elements as being associated with human housekeeping genes. In: Intl. Conf. on Biomedical Engineering and Informatics (BMEI). volume 3, pp. 1664-1668. doi:10.1109/BMEI.2011.6098522.
    • (2011) Intl. Conf. on Biomedical Engineering and Informatics (BMEI) , vol.3 , pp. 1664-1668
    • Dharmasaroja, P.1
  • 34
    • 78650855113 scopus 로고    scopus 로고
    • Impact of alu repeats on the evolution of human p53 binding sites
    • Cui F, Sirotin MV, Zhurkin VB (2011) Impact of alu repeats on the evolution of human p53 binding sites. Biology Direct 6: 1-20.
    • (2011) Biology Direct , vol.6 , pp. 1-20
    • Cui, F.1    Sirotin, M.V.2    Zhurkin, V.B.3
  • 37
    • 44449101758 scopus 로고    scopus 로고
    • Supervised learning method for the prediction of subcellular localization of proteins using amino acid and amino acid pair composition
    • Habib T, Zhang C, Yang JY, Yang MQ, Deng Y (2008) Supervised learning method for the prediction of subcellular localization of proteins using amino acid and amino acid pair composition. BMC Genom 9: S1-S16.
    • (2008) BMC Genom , vol.9
    • Habib, T.1    Zhang, C.2    Yang, J.Y.3    Yang, M.Q.4    Deng, Y.5
  • 38
    • 65249145330 scopus 로고    scopus 로고
    • Using genetic algorithms to select most predictive protein features
    • Kernytsky A, Rost B (2009) Using genetic algorithms to select most predictive protein features. Proteins: Struct Funct Bioinf 75: 75-88.
    • (2009) Proteins: Struct Funct Bioinf , vol.75 , pp. 75-88
    • Kernytsky, A.1    Rost, B.2
  • 41
    • 0038278386 scopus 로고    scopus 로고
    • Hidden Markov models that use predicted local structure for fold recognition: Alphabets of backbone geometry
    • DOI 10.1002/prot.10369
    • Karchin R, Cline M, Mandel-Gutfreund Y, Karplus K (2003) Hidden Markov Models that use predicted local structures for fold recognition: alphabets of backbone geometry. Proteins 51: 504-514. (Pubitemid 36676135)
    • (2003) Proteins: Structure, Function and Genetics , vol.51 , Issue.4 , pp. 504-514
    • Karchin, R.1    Cline, M.2    Mandel-Gutfreund, Y.3    Karplus, K.4
  • 43
    • 37149024415 scopus 로고    scopus 로고
    • Hidden Markov Models for prediction of protein features
    • Bystroff C, Krogh A (2008) Hidden Markov Models for prediction of protein features. Methods Mol Biol 413: 173-198.
    • (2008) Methods Mol Biol , vol.413 , pp. 173-198
    • Bystroff, C.1    Krogh, A.2
  • 44
    • 48449106792 scopus 로고    scopus 로고
    • The Jpred 3 secondary structure prediction server
    • Cole C, Barber JD, Barton GJ (2008) The Jpred 3 secondary structure prediction server. Nucl Acids Res 35: W197-W201.
    • (2008) Nucl Acids Res , vol.35
    • Cole, C.1    Barber, J.D.2    Barton, G.J.3
  • 45
    • 0346799108 scopus 로고    scopus 로고
    • Prediction of protein function from protein sequence and structure
    • DOI 10.1017/S0033583503003901
    • Whisstock JC, Lesk AM (2003) Prediction of protein function from protein sequence and structure. Q Rev Biophys 36: 307-340. (Pubitemid 38268660)
    • (2003) Quarterly Reviews of Biophysics , vol.36 , Issue.3 , pp. 307-340
    • Whisstock, J.C.1    Lesk, A.M.2
  • 46
    • 33947252154 scopus 로고    scopus 로고
    • Network-based prediction of protein function
    • DOI 10.1038/msb4100129, PII MSB4100129
    • Sharan R, Ulitsky I, Shamir R (2007) Network-based prediction of protein function. Nat Mol Sys Biol 3: 1-13. (Pubitemid 46423534)
    • (2007) Molecular Systems Biology , vol.3 , pp. 1-13
    • Sharan, R.1    Ulitsky, I.2    Shamir, R.3
  • 48
    • 59549087165 scopus 로고    scopus 로고
    • On discriminative vs. Generative classifiers: A comparison of logistic regression and naive bayes
    • Ng AY, Jordan MI (2002) On discriminative vs. generative classifiers: A comparison of logistic regression and naive bayes. Neural Information Processing Systems: 1-8.
    • (2002) Neural Information Processing Systems , pp. 1-8
    • Ng, A.Y.1    Jordan, M.I.2
  • 49
    • 56949103478 scopus 로고    scopus 로고
    • Generative or discriminative? Getting the best of both worlds
    • Bishop CM, Lasserre J (2007) Generative or discriminative? getting the best of both worlds. Bayesian Statistics 8: 3-24.
    • (2007) Bayesian Statistics , vol.8 , pp. 3-24
    • Bishop, C.M.1    Lasserre, J.2
  • 52
    • 0021760026 scopus 로고
    • Methods to locate signals in nucleic acid sequences
    • Staden R (1984) Methods to locate signals in nucleic acid sequences. Nucl Acids Res 12: 505-519.
    • (1984) Nucl Acids Res , vol.12 , pp. 505-519
    • Staden, R.1
  • 53
    • 17644369311 scopus 로고    scopus 로고
    • Computational technique for improvement of the position-weight matrices for the DNA/protein binding sites
    • DOI 10.1093/nar/gki519
    • Gershenzon NI, Stormo GD, Ioshikhes IP (2005) Computational technique for improvement of the position-weight matrices for the DNA/protein binding sites. Nucl Acids Res 33: 2290-2301. (Pubitemid 41439896)
    • (2005) Nucleic Acids Research , vol.33 , Issue.7 , pp. 2290-2301
    • Gershenzon, N.I.1    Stormo, G.D.2    Ioshikhes, I.P.3
  • 54
    • 37449009457 scopus 로고    scopus 로고
    • On splice site prediction using weight array models: A comparison of smoothing techniques
    • Taher L, Meinicke P, Morgensten B (2007) On splice site prediction using weight array models: a comparison of smoothing techniques. J of Physics: Conference Series 90: 012004.
    • (2007) J of Physics: Conference Series , vol.90 , pp. 012004
    • Taher, L.1    Meinicke, P.2    Morgensten, B.3
  • 56
    • 79952470442 scopus 로고    scopus 로고
    • De-novo discovery of differentially abundant transcription factor binding sites including their positional preference
    • Keilwagen J, Grau J, Paponov IA, Posch S, Strickert M, et al. (2011) De-novo discovery of differentially abundant transcription factor binding sites including their positional preference. PLoS Comp Biol 7: e1001070.
    • (2011) PLoS Comp Biol , vol.7
    • Keilwagen, J.1    Grau, J.2    Paponov, I.A.3    Posch, S.4    Strickert, M.5
  • 57
    • 0034136782 scopus 로고    scopus 로고
    • Mdeling splice sites with Bayes networks
    • Cai D, Delcher A, Kao B, Kasif S (2000) Modeling splice sites with bayes networks. Bioinformatics 16: 152-158. (Pubitemid 30248592)
    • (2000) Bioinformatics , vol.16 , Issue.2 , pp. 152-158
    • Deyou, C.1    Delcher, A.2    Ben, K.3    Kasif, S.4
  • 58
    • 20744440509 scopus 로고    scopus 로고
    • Identification of transcription factor binding sites with variable-order Bayesian networks
    • DOI 10.1093/bioinformatics/bti410
    • Ben-Gal I, Shani A, Gohr A, Grau J, Arviv S, et al. (2005) Identification of transcription factor binding sites with variable-order bayesian networks. Bioinformatics 21: 2657-2666. (Pubitemid 40852312)
    • (2005) Bioinformatics , vol.21 , Issue.11 , pp. 2657-2666
    • Ben-Gal, I.1    Shani, A.2    Gohr, A.3    Grau, J.4    Arviv, S.5    Shmilovici, A.6    Posch, S.7    Grosse, I.8
  • 60
    • 34047200354 scopus 로고    scopus 로고
    • Global discriminative learning for higher-accuracy computational gene prediction
    • Bernal A, Crammer K, Hatzigeorgiou A, Pereira F (2003) Global discriminative learning for higher-accuracy computational gene prediction. PLoS Comp Biol 3: e54.
    • (2003) PLoS Comp Biol , vol.3
    • Bernal, A.1    Crammer, K.2    Hatzigeorgiou, A.3    Pereira, F.4
  • 62
    • 0141974916 scopus 로고    scopus 로고
    • A non-parametric model for transcription factor binding sites
    • King OD, Roth FP (2003) A non-parametric model for transcription factor binding sites. Nucl Acids Res 31: e116.
    • (2003) Nucl Acids Res , vol.31
    • King, O.D.1    Roth, F.P.2
  • 64
    • 1542559402 scopus 로고    scopus 로고
    • Support vector machine applications in computational biology
    • Schölkopf B, Tsuda K, Vert JP, editors, Cambridge, MA: MIT Press
    • Noble WS (2004) Support vector machine applications in computational biology. In: Schölkopf B, Tsuda K, Vert JP, editors, Kernel Methods in Computational Biology, Cambridge, MA: MIT Press. pp. 71-92.
    • (2004) Kernel Methods in Computational Biology , pp. 71-92
    • Noble, W.S.1
  • 65
    • 33747871991 scopus 로고    scopus 로고
    • ARTS: Accurate recognition of transcription starts in human
    • DOI 10.1093/bioinformatics/btl250
    • Sonnenburg S, Zien A, Rätsch G (2006) ARTS: accurate recognition of transcription starts in human. Bioinformatics 22: e472-480. (Pubitemid 44288318)
    • (2006) Bioinformatics , vol.22 , Issue.14
    • Sonnenburg, S.1    Zien, A.2    Ratsch, G.3
  • 66
    • 24144441274 scopus 로고    scopus 로고
    • TICO: A tool for improving predictions of prokaryotic translation initiation sites
    • DOI 10.1093/bioinformatics/bti563
    • Tech M, Pfeifer N, Morgenstein B, Meinicke P (2005) TICO: a tool for improving predictions of prokaryotic translation initiation sites. Bioinformatics 21: 3568-3569. (Pubitemid 41236003)
    • (2005) Bioinformatics , vol.21 , Issue.17 , pp. 3568-3569
    • Tech, M.1    Pfeifer, N.2    Morgenstern, B.3    Meinicke, P.4
  • 67
    • 70350708134 scopus 로고    scopus 로고
    • mGene: Accurate SVM-based gene finding with an application to nematode genomes
    • Schweikert G, Zien A, Zeller G, Behr J, Dieterich C, et al. (2009) mGene: accurate SVM-based gene finding with an application to nematode genomes. Genome Res 19: 2133-2143.
    • (2009) Genome Res , vol.19 , pp. 2133-2143
    • Schweikert, G.1    Zien, A.2    Zeller, G.3    Behr, J.4    Dieterich, C.5
  • 68
    • 36448978247 scopus 로고    scopus 로고
    • OSCAR: One-class SVM for accurate recognition of ciselements
    • Jiang B, Zhang MQ, Zhang X (2007) OSCAR: one-class SVM for accurate recognition of ciselements. Bioinformatics 23: 2823-2838.
    • (2007) Bioinformatics , vol.23 , pp. 2823-2838
    • Jiang, B.1    Zhang, M.Q.2    Zhang, X.3
  • 69
    • 79952114056 scopus 로고    scopus 로고
    • Kernel-based identification of regulatory modules
    • Computational Biology of Transcription Factor Binding Sites, Springer
    • Schultheiss SJ (2010) Kernel-based identification of regulatory modules. In: Computational Biology of Transcription Factor Binding Sites, Springer, volume 674 of Methods Mol Biol. pp. 213-223.
    • (2010) Methods Mol Biol , vol.674 , pp. 213-223
    • Schultheiss, S.J.1
  • 71
    • 34047234690 scopus 로고    scopus 로고
    • Characterization and identification of microrna core promoters in four model species
    • Zhou X, Ruan J, Wang G, Zhang W (2007) Characterization and identification of microrna core promoters in four model species. PLoS Comp Biol 3: e37.
    • (2007) PLoS Comp Biol , vol.3
    • Zhou, X.1    Ruan, J.2    Wang, G.3    Zhang, W.4
  • 72
    • 55049130233 scopus 로고    scopus 로고
    • Pol II promoter prediction using characteristic 4-mer motifs: A machine learning approach
    • Anwar F, Baker SM, Jabid T, Hasan MM, Shoyaib M, et al. (2008) Pol II promoter prediction using characteristic 4-mer motifs: a machine learning approach. BMC Bioinformatics 9: 414-421.
    • (2008) BMC Bioinformatics , vol.9 , pp. 414-421
    • Anwar, F.1    Baker, S.M.2    Jabid, T.3    Hasan, M.M.4    Shoyaib, M.5
  • 73
    • 84883588081 scopus 로고    scopus 로고
    • Kmer-SVM: A web server for identifying predictive regulatory sequence features in genomic data sets
    • Fletez-Brant C, Lee D, McCallion AS, Beer MA (2013) Kmer-SVM: a web server for identifying predictive regulatory sequence features in genomic data sets. Nucl Acids Res 41: W544-W556.
    • (2013) Nucl Acids Res , vol.41
    • Fletez-Brant, C.1    Lee, D.2    McCallion, A.S.3    Beer, M.A.4
  • 74
    • 0031853364 scopus 로고    scopus 로고
    • Feature selection for genetic sequence classification
    • Chuzhanova NA, Jones AJ, Margetts S (1998) Feature selection for genetic sequence classification. Bioinformatics 14: 139-143. (Pubitemid 28395872)
    • (1998) Bioinformatics , vol.14 , Issue.2 , pp. 139-143
    • Chuzhanova, N.A.1    Jones, A.J.2    Margetts, S.3
  • 75
    • 42249099020 scopus 로고    scopus 로고
    • Shuffling biological sequences with motif constraints
    • Riviere R, Barth D, Cohen J, Denise A (2007) Shuffling biological sequences with motif constraints. J Discrete Algo 6: 192-204.
    • (2007) J Discrete Algo , vol.6 , pp. 192-204
    • Riviere, R.1    Barth, D.2    Cohen, J.3    Denise, A.4
  • 77
    • 0024895461 scopus 로고
    • A note on genetic algorithms for large-scale feature selection
    • Siedlecki W, Sklansky J (1989) A note on genetic algorithms for large-scale feature selection. Pattern Recogn Lett 10: 335-347.
    • (1989) Pattern Recogn Lett , vol.10 , pp. 335-347
    • Siedlecki, W.1    Sklansky, J.2
  • 79
    • 0033220766 scopus 로고    scopus 로고
    • Nearest neighbor classifier: Simultaneous editing and feature selection
    • DOI 10.1016/S0167-8655(99)00082-3
    • Kuncheva LI, Jain LC (1999) Nearest neighbor classifier: simultaneous editing and feature selection. Pattern Recogn Lett 20: 1149-1156. (Pubitemid 32261892)
    • (1999) Pattern Recognition Letters , vol.20 , Issue.11-13 , pp. 1149-1156
    • Kuncheva, L.I.1    Jain, L.C.2
  • 82
    • 34447343762 scopus 로고    scopus 로고
    • A hybrid genetic algorithm for feature selection wrapper based on mutual information
    • DOI 10.1016/j.patrec.2007.05.011, PII S0167865507001754
    • Huang J, Cai Y, Xu X (2007) A hybrid genetic algorithm for feature selection wrapper based on mutual information. J Pattern Recogn Lett 28: 1825-1844. (Pubitemid 47058633)
    • (2007) Pattern Recognition Letters , vol.28 , Issue.13 , pp. 1825-1844
    • Huang, J.1    Cai, Y.2    Xu, X.3
  • 83
    • 85002377847 scopus 로고    scopus 로고
    • Genetic algorithms as a strategy for feature selection
    • Leardi R, Boggia R, Terrile M (2005) Genetic algorithms as a strategy for feature selection. J Chemometrics 6: 267-281.
    • (2005) J Chemometrics , vol.6 , pp. 267-281
    • Leardi, R.1    Boggia, R.2    Terrile, M.3
  • 88
    • 5444266247 scopus 로고    scopus 로고
    • Evaluation of mutual information and genetic programming for feature selection in QSAR
    • Venkatraman V, Dalby AR, Yang ZR (2004) Evaluation of mutual information and genetic programming for feature selection in QSAR. J Chem Inf Comput Sci 44: 1686-1692.
    • (2004) J Chem Inf Comput Sci , vol.44 , pp. 1686-1692
    • Venkatraman, V.1    Dalby, A.R.2    Yang, Z.R.3
  • 90
    • 34247214462 scopus 로고    scopus 로고
    • Feature selection and molecular classification of cancer using genetic programming
    • DOI 10.1593/neo.07121
    • Yu J, Yu J, Almal AA, Dhanasekaran SM, Ghosh D, et al. (2007) Feature selection and molecular classification of cancer using genetic programming. Neoplasia 9: 292-303. (Pubitemid 46608296)
    • (2007) Neoplasia , vol.9 , Issue.4 , pp. 292-303
    • Yu, J.1    Yu, J.2    Almal, A.A.3    Dhanasekaran, S.M.4    Ghosh, D.5    Worzel, W.P.6    Chinnaiyan, A.M.7
  • 94
    • 0031381525 scopus 로고    scopus 로고
    • Wrappers for feature subset selection
    • PII S000437029700043X
    • Kohavi R, John GH (1997) Wrappers for feature subset selection. Artificial Intelligence J 97: 273-324. (Pubitemid 127401107)
    • (1997) Artificial Intelligence , vol.97 , Issue.1-2 , pp. 273-324
    • Kohavi, R.1    John, G.H.2
  • 95
    • 0026453958 scopus 로고
    • Training a 3-node neural network is NP-complete
    • Blum AL, Rivest RL (1992) Training a 3-node neural network is NP-complete. Neural Networks 5: 117-127.
    • (1992) Neural Networks , vol.5 , pp. 117-127
    • Blum, A.L.1    Rivest, R.L.2
  • 96
    • 0001815269 scopus 로고
    • Constructing optimal binary decision trees is NP-complete
    • Hyafil L, Rivest RL (1976) Constructing optimal binary decision trees is NP-complete. Information Processing Letters 5: 15-17.
    • (1976) Information Processing Letters , vol.5 , pp. 15-17
    • Hyafil, L.1    Rivest, R.L.2
  • 97
    • 0002774069 scopus 로고
    • Feature set search algorithms
    • The Netherlands: Sijthoff & Noordhoff, Alphen aan den Rijn
    • Kittler J (1978) Feature set search algorithms. In: Pattern Recognition and Signal Processing, The Netherlands: Sijthoff & Noordhoff, Alphen aan den Rijn. pp. 41-60.
    • (1978) Pattern Recognition and Signal Processing , pp. 41-60
    • Kittler, J.1
  • 99
    • 17044405923 scopus 로고    scopus 로고
    • Toward integrating feature selection algorithms for classification and clustering
    • Liu H (2005) Toward integrating feature selection algorithms for classification and clustering. IEEE Trans on Knowledge and Data Engineering 17: 491-502.
    • (2005) IEEE Trans on Knowledge and Data Engineering , vol.17 , pp. 491-502
    • Liu, H.1
  • 100
    • 0022426366 scopus 로고
    • Nomenclature committee of the international union of biochemistry (nciub). Nomenclature for incompletely specified bases in nucleic acid sequences. Recommendations 1984
    • IUPAC Committee
    • IUPAC Committee (1985) Nomenclature committee of the international union of biochemistry (nciub). nomenclature for incompletely specified bases in nucleic acid sequences. Recommendations 1984. Biochemistry 229: 75-88.
    • (1985) Biochemistry , vol.229 , pp. 75-88
  • 102
    • 0031381525 scopus 로고    scopus 로고
    • Wrappers for feature subset selection
    • PII S000437029700043X
    • Kohavi R, John GH (1997) Wrappers for feature subset selection. Artificial Intelligence 97: 273-324. (Pubitemid 127401107)
    • (1997) Artificial Intelligence , vol.97 , Issue.1-2 , pp. 273-324
    • Kohavi, R.1    John, G.H.2
  • 103
    • 0031082536 scopus 로고    scopus 로고
    • New methods of competitive coevolution
    • Dosin CD, Belew RK (1997) New methods of competitive coevolution. Evol Comput 5: 1-29.
    • (1997) Evol Comput , vol.5 , pp. 1-29
    • Dosin, C.D.1    Belew, R.K.2
  • 106
    • 3843106208 scopus 로고    scopus 로고
    • An empirical study of the naive Bayes performance
    • Rish I (2001) An empirical study of the naive Bayes performance. In: IJCAI Workshop on Empirical Methods in AI. pp. 41-46.
    • (2001) IJCAI Workshop on Empirical Methods in AI , pp. 41-46
    • Rish, I.1
  • 107
    • 84864925590 scopus 로고    scopus 로고
    • A java framework for statistical analysis and classification of biological sequences
    • Grau J, Keilwagen J, Gohr A, Haldemann B, Posch S, et al. (2012) A java framework for statistical analysis and classification of biological sequences. J Mach Learn Res 13: 1967-1971.
    • (2012) J Mach Learn Res , vol.13 , pp. 1967-1971
    • Grau, J.1    Keilwagen, J.2    Gohr, A.3    Haldemann, B.4    Posch, S.5
  • 112
    • 0004255908 scopus 로고    scopus 로고
    • Boston, MA: Mc-Graw Hill Companies, Inc., 1 edition
    • Mitchell TM (1997) Machine Learning. Boston, MA: Mc-Graw Hill Companies, Inc., 1 edition, 414 pp.
    • (1997) Machine Learning , pp. 414
    • Mitchell, T.M.1
  • 113
    • 33749249600 scopus 로고    scopus 로고
    • The relationship between precision-recall and roc curves
    • Intl Conf on Mach. Learn. (ICML). New York, NY, USA: ACM
    • Davis J, Goadrich M (2006) The relationship between precision-recall and roc curves. In: Intl Conf on Mach. Learn. (ICML). New York, NY, USA: ACM, ICML '06, pp. 233-240.
    • (2006) ICML '06 , pp. 233-240
    • Davis, J.1    Goadrich, M.2
  • 115
    • 0030787520 scopus 로고    scopus 로고
    • Improved splice site detection in Genie
    • Reese MG, Eeckman F, Kulp D, Haussler D (1997) Improved splice site detection in genie. J COMPUT BIOL 4: 311-323. (Pubitemid 27355870)
    • (1997) Journal of Computational Biology , vol.4 , Issue.3 , pp. 311-323
    • Reese, M.G.1
  • 118
    • 0034282717 scopus 로고    scopus 로고
    • Cloning and characterization of erythroid-specific DNase i-hypersensitive site in human rhesus-associated glycoprotein gene
    • Iwamoto S, Suganuma H, Kamesaki T, Omi T, Okuda H, et al. (2000) Cloning and characterization of erythroid-specific DNase i-hypersensitive site in human rhesus-associated glycoprotein gene. J Biol Chem 275: 27324-31.
    • (2000) J Biol Chem , vol.275 , pp. 27324-27331
    • Iwamoto, S.1    Suganuma, H.2    Kamesaki, T.3    Omi, T.4    Okuda, H.5
  • 120
    • 46249106500 scopus 로고    scopus 로고
    • POIMs: Positional oligomer importance matrices - Understanding support vector machine-based signal detectors
    • DOI 10.1093/bioinformatics/btn170
    • Sonnenburg S, Zien A, Philips P, Rätsch G (2008) POIMs: positional oligomer importance matrices - understanding support vector machine based signal detectors. Bioinformatics 24: i6-i14. (Pubitemid 351911652)
    • (2008) Bioinformatics , vol.24 , Issue.13
    • Sonnenburg, S.1    Zien, A.2    Philips, P.3    Ratsch, G.4


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.