메뉴 건너뛰기




Volumn 26, Issue 7, 2014, Pages 1644-1656

Data stream clustering with affinity propagation

Author keywords

affinity propagation; autonomic computing; grid monitoring; Streaming data clustering

Indexed keywords

BENCHMARKING; DATA COMMUNICATION SYSTEMS; DATA FLOW ANALYSIS; DATA TRANSFER;

EID: 84904433383     PISSN: 10414347     EISSN: None     Source Type: Journal    
DOI: 10.1109/TKDE.2013.146     Document Type: Article
Times cited : (86)

References (42)
  • 3
    • 34548803489 scopus 로고    scopus 로고
    • Conquering the divide: Continuous clustering of distributed data streams
    • DOI 10.1109/ICDE.2007.368962, 4221752, 23rd International Conference on Data Engineering, ICDE 2007
    • G. Cormode, S. Muthukrishnan, and W. Zhuang, "Conquering the divide: Continuous clustering of distributed data streams, " in Proc. IEEE 23rd ICDE, Istanbul, Turkey, 2007, pp. 1036-1045. (Pubitemid 47422107)
    • (2007) Proceedings - International Conference on Data Engineering , pp. 1036-1045
    • Cormode, G.1    Muthukrishnan, S.2    Zhuang, W.3
  • 6
    • 85012236181 scopus 로고    scopus 로고
    • A framework for clustering evolving data streams
    • Berlin, Germany
    • C. Aggarwal, J. Han, J. Wang, and P. S. Yu, "A framework for clustering evolving data streams, " in Proc. 29th Int. Conf. VLDB, Berlin, Germany, 2003, pp. 81-92.
    • (2003) Proc. 29th Int. Conf. VLDB , pp. 81-92
    • Aggarwal, C.1    Han, J.2    Wang, J.3    Yu, P.S.4
  • 7
    • 84879463278 scopus 로고    scopus 로고
    • StreamKM++: A clustering algorithm for data streams
    • May
    • M. R. Ackermann et al., "StreamKM++: A clustering algorithm for data streams, " CM J. Exp. Algorithmics, vol. 17, no. 1, pp. 2.4:2.1-2.4:2.30, May 2012.
    • (2012) CM J. Exp. Algorithmics , vol.17 , Issue.1 , pp. 2421-24230
    • Ackermann, M.R.1
  • 8
    • 85162439676 scopus 로고    scopus 로고
    • Fast and accurate Kmeans for large datasets
    • M. Shindler, A. Wong, and A. Meyerson, "Fast and accurate Kmeans for large datasets, " in Proc. NIPS, 2011, pp. 2375-2383.
    • (2011) Proc. NIPS , pp. 2375-2383
    • Shindler, M.1    Wong, A.2    Meyerson, A.3
  • 9
    • 34548620153 scopus 로고    scopus 로고
    • Density-based clustering over an evolving data stream with noise
    • F. Cao, M. Ester, W. Qian, and A. Zhou, "Density-based clustering over an evolving data stream with noise, " in Proc. SDM, 2006, pp. 326-337.
    • (2006) Proc. SDM , pp. 326-337
    • Cao, F.1    Ester, M.2    Qian, W.3    Zhou, A.4
  • 11
    • 84904419216 scopus 로고    scopus 로고
    • IBM [Online]. Available
    • IBM. (2001). IBM manifesto for Autonomic Computing [Online]. Available: http://www.research.ibm.com/autonomic/
    • (2001) IBM Manifesto for Autonomic Computing
  • 14
    • 33847172327 scopus 로고    scopus 로고
    • Clustering by passing messages between data points
    • DOI 10.1126/science.1136800
    • B. J. Frey and D. Dueck, "Clustering by passing messages between data points, " Science, vol. 315, no. 5814, pp. 972-976, 2007. (Pubitemid 46281181)
    • (2007) Science , vol.315 , Issue.5814 , pp. 972-976
    • Frey, B.J.1    Dueck, D.2
  • 15
    • 56049108623 scopus 로고    scopus 로고
    • Data streaming with affinity propagation
    • X. Zhang, C. Furtlehner, and M. Sebag, "Data streaming with affinity propagation, " in Proc. ECML/PKDD, 2008, pp. 628-643.
    • (2008) Proc. ECML/PKDD , pp. 628-643
    • Zhang, X.1    Furtlehner, C.2    Sebag, M.3
  • 17
    • 0002916530 scopus 로고
    • Continuous inspection schemes
    • E. Page, "Continuous inspection schemes, " Biometrika, vol. 41, no. 1/2, pp. 100-115, 1954.
    • (1954) Biometrika , vol.41 , Issue.1-2 , pp. 100-115
    • Page, E.1
  • 18
    • 77956891289 scopus 로고
    • Inference about the change-point from cumulative sum tests
    • D. Hinkley, "Inference about the change-point from cumulative sum tests, " Biometrika, vol. 58, no. 3, pp. 509-523, 1971.
    • (1971) Biometrika , vol.58 , Issue.3 , pp. 509-523
    • Hinkley, D.1
  • 19
    • 71149108237 scopus 로고    scopus 로고
    • Identifying suspicious URLs: An application of large-scale online learning
    • Montreal, QC, Canada
    • J. Ma, L. K. Saul, S. Savage, and G. M. Voelker, "Identifying suspicious URLs: An application of large-scale online learning, " in Proc. 26th ICML, Montreal, QC, Canada, 2009, pp. 681-688.
    • (2009) Proc. 26th ICML , pp. 681-688
    • Ma, J.1    Saul, L.K.2    Savage, S.3    Voelker, G.M.4
  • 20
    • 84949730117 scopus 로고    scopus 로고
    • Active mining of data streams
    • W. Fan, H. Wang, and P. S. Yu, "Active mining of data streams, " in Proc. SDM, 2004.
    • (2004) Proc. SDM
    • Fan, W.1    Wang, H.2    Yu, P.S.3
  • 22
    • 2442517225 scopus 로고    scopus 로고
    • Scaling clustering algorithms for massive data sets using data streams
    • S. Nittel, K. T. Leung, and A. Braverman, "Scaling clustering algorithms for massive data sets using data streams, " in Proc. 20th ICDE, 2004, p. 830.
    • (2004) Proc. 20th ICDE , pp. 830
    • Nittel, S.1    Leung, K.T.2    Braverman, A.3
  • 25
    • 4544306385 scopus 로고    scopus 로고
    • Online mining of changes from data streams: Research problems and preliminary results
    • San Diego, CA, USA
    • G. Dong et al., "Online mining of changes from data streams: Research problems and preliminary results, " in Proc. ACM SIGMOD, San Diego, CA, USA, 2003.
    • (2003) Proc. ACM SIGMOD
    • Dong, G.1
  • 27
    • 85170282443 scopus 로고    scopus 로고
    • A density-based algorithm for discovering clusters in large spatial databases with noise
    • M. Ester, H.-P. Kriegel, J. Sander, and X. Xu, "A density-based algorithm for discovering clusters in large spatial databases with noise, " in Proc. SIGKDD, 1996, pp. 226-231.
    • (1996) Proc. SIGKDD , pp. 226-231
    • Ester, M.1    Kriegel, H.-P.2    Sander, J.3    Xu, X.4
  • 28
    • 79955500697 scopus 로고    scopus 로고
    • Classification and novel class detection in concept-drifting data streams under time constraints
    • Jun.
    • M. M. Masud, J. Gao, L. Khan, J. Han, and B. Thuraisingham, "Classification and novel class detection in concept-drifting data streams under time constraints, " IEEE Trans. Knowl. Data Eng., vol. 23, no. 6, pp. 859-874, Jun. 2011.
    • (2011) IEEE Trans. Knowl. Data Eng. , vol.23 , Issue.6 , pp. 859-874
    • Masud, M.M.1    Gao, J.2    Khan, L.3    Han, J.4    Thuraisingham, B.5
  • 32
    • 0032676506 scopus 로고    scopus 로고
    • A data mining framework for building intrusion detection models
    • Oakland, CA, USA
    • W. Lee, S. J. Stolfo, and K. W. Mok, "A data mining framework for building intrusion detection models, " in Proc. IEEE Symp. Security Privacy, Oakland, CA, USA, 1999, pp. 120-132.
    • (1999) Proc. IEEE Symp. Security Privacy , pp. 120-132
    • Lee, W.1    Stolfo, S.J.2    Mok, K.W.3
  • 33
    • 37049002837 scopus 로고    scopus 로고
    • Processing of massive audit data streams for real-time anomaly intrusion detection
    • DOI 10.1016/j.comcom.2007.10.010, PII S0140366407004045
    • W. Wang, X. Guan, and X. Zhang, "Processing of massive audit data streams for real-time anomaly intrusion detection, " Comput. Commun., vol. 31, no. 1, pp. 58-72, 2008. (Pubitemid 350251566)
    • (2008) Computer Communications , vol.31 , Issue.1 , pp. 58-72
    • Wang, W.1    Guan, X.2    Zhang, X.3
  • 35
    • 3142749702 scopus 로고    scopus 로고
    • Approximate counts and quantiles over sliding windows
    • Paris, France
    • A. Arasu and G. S. Manku, "Approximate counts and quantiles over sliding windows, " in Proc. 23rd PODS, Paris, France, 2004, pp. 286-296.
    • (2004) Proc. 23rd PODS , pp. 286-296
    • Arasu, A.1    Manku, G.S.2
  • 36
    • 1142279464 scopus 로고    scopus 로고
    • Distributed top-k monitoring
    • San Diego, CA, USA
    • B. Babcock and C. Olston, "Distributed top-k monitoring, " in Proc. SIGMOD, San Diego, CA, USA, 2003, pp. 28-39.
    • (2003) Proc. SIGMOD , pp. 28-39
    • Babcock, B.1    Olston, C.2
  • 37
    • 48649098791 scopus 로고    scopus 로고
    • Online mining of frequent sets in data streams with error guarantee
    • X. H. Dang, W.-K. Ng, and K.-L. Ong, "Online mining of frequent sets in data streams with error guarantee, " Knowl. Inf. Syst., vol. 16, no. 2, 2008, pp. 245-258.
    • (2008) Knowl. Inf. Syst. , vol.16 , Issue.2 , pp. 245-258
    • Dang, X.H.1    Ng, W.-K.2    Ong, K.-L.3
  • 38
    • 70350649252 scopus 로고    scopus 로고
    • Accurate decision trees for mining high speed data streams
    • Washington, DC, USA
    • J. Gama, R. Rocha, and P. Medas, "Accurate decision trees for mining high speed data streams, " in Proc. SIGMOD, Washington, DC, USA, 2003, pp. 523-528.
    • (2003) Proc. SIGMOD , pp. 523-528
    • Gama, J.1    Rocha, R.2    Medas, P.3
  • 40
    • 35748982103 scopus 로고    scopus 로고
    • Clustering by soft-constraint affinity propagation: Applications to gene-expression data
    • DOI 10.1093/bioinformatics/btm414
    • M. Leone, Sumedha, and M. Weigt, "Clustering by soft-constraint affinity propagation: Applications to gene-expression data, " Bioinformatics, vol. 23, no. 20, pp. 2708-2715, 2007. (Pubitemid 350048335)
    • (2007) Bioinformatics , vol.23 , Issue.20 , pp. 2708-2715
    • Leone, M.1    Weigt, S.2    Weigt, M.3
  • 42
    • 4544259509 scopus 로고    scopus 로고
    • Localitysensitive hashing scheme based on p-stable distributions
    • Brooklyn, NY, USA
    • M. Datar, N. Immorlica, P. Indyk, and V. S. Mirrokni, "Localitysensitive hashing scheme based on p-stable distributions, " in Proc. 20th Annu. SCG, Brooklyn, NY, USA, 2004, pp. 253-262.
    • (2004) Proc. 20th Annu. SCG , pp. 253-262
    • Datar, M.1    Immorlica, N.2    Indyk, P.3    Mirrokni, V.S.4


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.