-
1
-
-
58149288453
-
-
JHEPFG 1029-8479 10.1088/1126-6708/2008/10/091
-
O. Aharony, O. Bergman, D.L. Jafferis, and J. Maldacena, J. High Energy Phys. 10 (2008) 091. JHEPFG 1029-8479 10.1088/1126-6708/2008/10/091
-
J. High Energy Phys.
, vol.2008
, Issue.10
, pp. 091
-
-
Aharony, O.1
Bergman, O.2
Jafferis, D.L.3
Maldacena, J.4
-
2
-
-
58149300001
-
-
JHEPFG 1029-8479 10.1088/1126-6708/2008/09/040
-
J.A. Minahan and K. Zarembo, J. High Energy Phys. 09 (2008) 040. JHEPFG 1029-8479 10.1088/1126-6708/2008/09/040
-
J. High Energy Phys.
, vol.2008
, Issue.9
, pp. 040
-
-
Minahan, J.A.1
Zarembo, K.2
-
3
-
-
55149115874
-
-
NUPBBO 0550-3213 10.1016/j.nuclphysb.2008.09.015
-
B. Stefanski, Jr., Nucl. Phys. B808, 80 (2009). NUPBBO 0550-3213 10.1016/j.nuclphysb.2008.09.015
-
(2009)
Nucl. Phys.
, vol.B808
, pp. 80
-
-
Stefanski, Jr.B.1
-
4
-
-
58149299989
-
-
JHEPFG 1029-8479 10.1088/1126-6708/2008/09/129
-
G. Arutyunov and S. Frolov, J. High Energy Phys. 09 (2008) 129. JHEPFG 1029-8479 10.1088/1126-6708/2008/09/129
-
J. High Energy Phys.
, vol.2008
, Issue.9
, pp. 129
-
-
Arutyunov, G.1
Frolov, S.2
-
5
-
-
67649534919
-
-
JHEPFG 1029-8479 10.1088/1126-6708/2009/02/040
-
N. Gromov and P. Vieira, J. High Energy Phys. 02 (2009) 040. JHEPFG 1029-8479 10.1088/1126-6708/2009/02/040
-
J. High Energy Phys.
, vol.2009
, Issue.2
, pp. 040
-
-
Gromov, N.1
Vieira, P.2
-
6
-
-
62649100786
-
-
JHEPFG 1029-8479 10.1088/1126-6708/2009/01/016
-
N. Gromov and P. Vieira, J. High Energy Phys. 01 (2009) 016. JHEPFG 1029-8479 10.1088/1126-6708/2009/01/016
-
J. High Energy Phys.
, vol.2009
, Issue.1
, pp. 016
-
-
Gromov, N.1
Vieira, P.2
-
7
-
-
77952888301
-
-
NUPBBO 0550-3213 10.1016/j.nuclphysb.2010.04.005
-
D. Bombardelli, D. Fioravanti, and R. Tateo, Nucl. Phys. B834, 543 (2010). NUPBBO 0550-3213 10.1016/j.nuclphysb.2010.04.005
-
(2010)
Nucl. Phys.
, vol.B834
, pp. 543
-
-
Bombardelli, D.1
Fioravanti, D.2
Tateo, R.3
-
9
-
-
84856233108
-
-
LMPHDY 0377-9017 10.1007/s11005-011-0520-y
-
T. Klose, Lett. Math. Phys. 99, 401 (2012). LMPHDY 0377-9017 10.1007/s11005-011-0520-y
-
(2012)
Lett. Math. Phys.
, vol.99
, pp. 401
-
-
Klose, T.1
-
11
-
-
84892380327
-
-
JHEPFG 1029-8479 10.1007/JHEP10(2013)135
-
N. Drukker, J. High Energy Phys. 10 (2013) 135. JHEPFG 1029-8479 10.1007/JHEP10(2013)135
-
J. High Energy Phys.
, vol.2013
, Issue.10
, pp. 135
-
-
Drukker, N.1
-
12
-
-
84864335520
-
-
JHEPFG 1029-8479 10.1007/JHEP06(2012)048
-
D. Correa, J. Henn, J. Maldacena, and A. Sever, J. High Energy Phys. 06 (2012) 048. JHEPFG 1029-8479 10.1007/JHEP06(2012)048
-
J. High Energy Phys.
, vol.2012
, Issue.6
, pp. 048
-
-
Correa, D.1
Henn, J.2
Maldacena, J.3
Sever, A.4
-
13
-
-
84870424600
-
-
JHEPFG 1029-8479 10.1007/JHEP11(2012)075
-
N. Gromov and A. Sever, J. High Energy Phys. 11 (2012) 075. JHEPFG 1029-8479 10.1007/JHEP11(2012)075
-
J. High Energy Phys.
, vol.2012
, Issue.11
, pp. 075
-
-
Gromov, N.1
Sever, A.2
-
15
-
-
84901440915
-
-
JHEPFG 1029-8479 10.1007/JHEP05(2014)025
-
A. Lewkowycz and J. Maldacena, J. High Energy Phys. 05 (2014) 025. JHEPFG 1029-8479 10.1007/JHEP05(2014)025
-
J. High Energy Phys.
, vol.2014
, Issue.5
, pp. 025
-
-
Lewkowycz, A.1
Maldacena, J.2
-
16
-
-
84904341190
-
-
M.S. Bianchi, L. Griguolo, M. Leoni, S. Penati, and D. Seminara, arXiv:1402.4128.
-
M.S. Bianchi, L. Griguolo, M. Leoni, S. Penati, and D. Seminara, arXiv:1402.4128.
-
-
-
-
17
-
-
84892394267
-
-
PRLTAO 0031-9007 10.1103/PhysRevLett.112.011602
-
N. Gromov, V. Kazakov, S. Leurent, and D. Volin, Phys. Rev. Lett. 112, 011602 (2014). PRLTAO 0031-9007 10.1103/PhysRevLett.112.011602
-
(2014)
Phys. Rev. Lett.
, vol.112
, pp. 011602
-
-
Gromov, N.1
Kazakov, V.2
Leurent, S.3
Volin, D.4
-
18
-
-
84904311793
-
-
This result was presented by D. Volin in his talk at the conference Integrability in Gauge and String Theory 2013 in Utrecht.
-
This result was presented by D. Volin in his talk at the conference Integrability in Gauge and String Theory 2013 in Utrecht.
-
-
-
-
19
-
-
84904319323
-
-
N. Gromov, F. Levkovich-Maslyuk, G. Sizov, and S. Valatka, arXiv:1402.0871.
-
N. Gromov, F. Levkovich-Maslyuk, G. Sizov, and S. Valatka, arXiv:1402.0871.
-
-
-
-
20
-
-
70349324587
-
-
PRLTAO 0031-9007 10.1103/PhysRevLett.103.131601
-
N. Gromov, V. Kazakov, and P. Vieira, Phys. Rev. Lett. 103, 131601 (2009). PRLTAO 0031-9007 10.1103/PhysRevLett.103.131601
-
(2009)
Phys. Rev. Lett.
, vol.103
, pp. 131601
-
-
Gromov, N.1
Kazakov, V.2
Vieira, P.3
-
21
-
-
78049459248
-
-
NUPBBO 0550-3213 10.1016/j.nuclphysb.2010.09.015
-
A. Cavaglià, D. Fioravanti, and R. Tateo, Nucl. Phys. B843, 302 (2011). NUPBBO 0550-3213 10.1016/j.nuclphysb.2010.09.015
-
(2011)
Nucl. Phys.
, vol.B843
, pp. 302
-
-
Cavaglià, A.1
Fioravanti, D.2
Tateo, R.3
-
22
-
-
84890803631
-
-
NUPBBO 0550-3213 10.1016/j.nuclphysb.2013.10.023
-
A. Cavaglià, D. Fioravanti, and R. Tateo, Nucl. Phys. B877, 852 (2013). NUPBBO 0550-3213 10.1016/j.nuclphysb.2013.10.023
-
(2013)
Nucl. Phys.
, vol.B877
, pp. 852
-
-
Cavaglià, A.1
Fioravanti, D.2
Tateo, R.3
-
23
-
-
84864450136
-
-
JHEPFG 1029-8479 10.1007/JHEP07(2012)023
-
N. Gromov, V. Kazakov, S. Leurent, and D. Volin, J. High Energy Phys. 07 (2012) 023. JHEPFG 1029-8479 10.1007/JHEP07(2012)023
-
J. High Energy Phys.
, vol.2012
, Issue.7
, pp. 023
-
-
Gromov, N.1
Kazakov, V.2
Leurent, S.3
Volin, D.4
-
24
-
-
84904320675
-
-
The Hirota equation holds when the (Equation presented) functions are evaluated on a Riemann section with long branch cuts of the form (Equation presented), (Equation presented) (see Ref. [23] for an explanation), and, by default, we consider the (Equation presented) functions as defined on this sheet, called the mirror sheet. On the contrary, the principal values of the (Equation presented) and (Equation presented) functions are associated with a sheet with short cuts (the magic sheet), as in Fig. 2. By definition, Eq. (3) is valid for (Equation presented) slightly above the real axis and has to be extended by analytic continuation.
-
The Hirota equation holds when the (Equation presented) functions are evaluated on a Riemann section with long branch cuts of the form (Equation presented), (Equation presented) (see Ref. [23] for an explanation), and, by default, we consider the (Equation presented) functions as defined on this sheet, called the mirror sheet. On the contrary, the principal values of the (Equation presented) and (Equation presented) functions are associated with a sheet with short cuts (the magic sheet), as in Fig. 2. By definition, Eq. (3) is valid for (Equation presented) slightly above the real axis and has to be extended by analytic continuation.
-
-
-
-
25
-
-
84904330762
-
-
N. Gromov, V. Kazakov, S. Leurent, and D. Volin, arXiv:1405.4857.
-
N. Gromov, V. Kazakov, S. Leurent, and D. Volin, arXiv:1405.4857.
-
-
-
-
27
-
-
84904280791
-
-
N. Gromov and G. Sizov, arXiv:1403.1894.
-
N. Gromov and G. Sizov, arXiv:1403.1894.
-
-
-
|