-
1
-
-
0003658403
-
Nonnegative Matrices in the Mathematical Sciences
-
Academic, New York, New York
-
A. Berman, R.J. Plemmons, Nonnegative Matrices in the Mathematical Sciences, Academic, New York, 1979.
-
(1979)
-
-
Berman, A.1
Plemmons, R.J.2
-
2
-
-
47749157077
-
Note to the mixed-type splitting iterative method for Z-matrices linear systems
-
G.H. Cheng, T.Z. Huang, and S.Q. Shen, Note to the mixed-type splitting iterative method for Z-matrices linear systems, J. Comput. Appl. Math. 220(1-2) (2008), pp. 1-7. doi: 10.1016/j.cam.2007.06.033
-
(2008)
J. Comput. Appl. Math
, vol.220
, Issue.1-2
, pp. 1-7
-
-
Cheng, G.H.1
Huang, T.Z.2
Shen, S.Q.3
-
3
-
-
33646143780
-
On convergence of the generalized AOR method for linear systems with diagonally dominant coefficient matrices
-
M.T. Darvishi and P. Hessari, On convergence of the generalized AOR method for linear systems with diagonally dominant coefficient matrices, Appl. Math. Comput. 176(1) (2006), pp. 128-133. doi: 10.1016/j.amc.2005.09.051
-
(2006)
Appl. Math. Comput
, vol.176
, Issue.1
, pp. 128-133
-
-
Darvishi, M.T.1
Hessari, P.2
-
4
-
-
0003998378
-
Theory of Matrix
-
Academic Press, New York, New York
-
P. Lancaster, Theory of Matrix, Academic Press, New York, 1969.
-
(1969)
-
-
Lancaster, P.1
-
5
-
-
28244480232
-
Note to the mixed-type splitting method for the positive real linear system
-
C.J. Li and D.J. Evans, Note to the mixed-type splitting method for the positive real linear system, Int. J. Comput. Math. 79(11) (2002), pp. 1201-1209. doi: 10.1080/00207160213943
-
(2002)
Int. J. Comput. Math
, vol.79
, Issue.11
, pp. 1201-1209
-
-
Li, C.J.1
Evans, D.J.2
-
6
-
-
26444487747
-
An iterative method for the positive real linear systems
-
C.J. Li, X.L. Liang, and D.J. Evans, An iterative method for the positive real linear systems, Int. J. Comput. Math. 78(1) (2001), pp. 153-163. doi: 10.1080/00207160108805103
-
(2001)
Int. J. Comput. Math
, vol.78
, Issue.1
, pp. 153-163
-
-
Li, C.J.1
Liang, X.L.2
Evans, D.J.3
-
7
-
-
84904291970
-
Comparison results on the preconditioned mixed-type splitting iterative method for M-matrix linear systems
-
M.M. Moghadam and F.P.A. Beik, Comparison results on the preconditioned mixed-type splitting iterative method for M-matrix linear systems, Bull. Iranian Math. Soc. 19(2) (2012), pp. 347-365.
-
(2012)
Bull. Iranian Math. Soc
, vol.19
, Issue.2
, pp. 347-365
-
-
Moghadam, M.M.1
Beik, F.P.A.2
-
8
-
-
1842829625
-
Iterative Methods for Sparse Linear Systems
-
2nd ed.,: SIAM, Philadelphia, Philadelphia
-
Y. Saad, Iterative Methods for Sparse Linear Systems, 2nd ed., SIAM, Philadelphia, 2003.
-
(2003)
-
-
Saad, Y.1
-
9
-
-
84863418228
-
Preconditioned iterative methods for solving weighted linear least squares problems
-
H. Shen, X. Shao, and T. Zhang, Preconditioned iterative methods for solving weighted linear least squares problems, Appl. Math. Mech.-Engl. Ed. 33(3) (2012), pp. 375-384. doi: 10.1007/s10483-012-1557-x
-
(2012)
Appl. Math. Mech.-Engl. Ed.
, vol.33
, Issue.3
, pp. 375-384
-
-
Shen, H.1
Shao, X.2
Zhang, T.3
-
10
-
-
37549067384
-
Convergence of generalized AOR iterative method for linear systems with strictly diagonally dominant matrices
-
G.X. Tian, T.Z. Huang, and S.Y. Cui, Convergence of generalized AOR iterative method for linear systems with strictly diagonally dominant matrices, J. Comput. Appl. Math. 213(1) (2008), pp. 240-247. doi: 10.1016/j.cam.2007.01.016
-
(2008)
J. Comput. Appl. Math
, vol.213
, Issue.1
, pp. 240-247
-
-
Tian, G.X.1
Huang, T.Z.2
Cui, S.Y.3
-
11
-
-
0003943048
-
Matrix Iterative Analysis
-
Prentice-Hall, Englewood Cliffs, NJ, Englewood Cliffs, NJ
-
R.S. Varga, Matrix Iterative Analysis, Prentice-Hall, Englewood Cliffs, NJ, 1962.
-
(1962)
-
-
Varga, R.S.1
-
12
-
-
84874845121
-
Comparison results on preconditioned GAOR methods for weighted linear least squares problems
-
G. Wang, Y. Du, and F. Tan, Comparison results on preconditioned GAOR methods for weighted linear least squares problems, J. Appl. Math. 2012 (2012), pp. 1-9.
-
(2012)
J. Appl. Math
, Issue.2012
, pp. 1-9
-
-
Wang, G.1
Du, Y.2
Tan, F.3
-
13
-
-
84855251183
-
Convergence of GAOR iterative method with strictly α diagonally dominant matrices
-
G. Wang, H. Wen, and T. Wang, Convergence of GAOR iterative method with strictly α diagonally dominant matrices, J. Appl. Math. 2011 (2011), pp. 1-10.
-
(2011)
J. Appl. Math
, Issue.2011
, pp. 1-10
-
-
Wang, G.1
Wen, H.2
Wang, T.3
-
14
-
-
3042569978
-
Basic comparison theorems for weak and weaker matrix splitting
-
Z.I. Woznicki, Basic comparison theorems for weak and weaker matrix splitting, Electron. J. Linear Algebra 8 (2001), pp. 53-59.
-
(2001)
Electron. J. Linear Algebra
, vol.8
, pp. 53-59
-
-
Woznicki, Z.I.1
-
15
-
-
34147157956
-
Preconditioned AOR iterative method for linear systems
-
M. Wu, L. Wang, and Y. Song, Preconditioned AOR iterative method for linear systems, Appl. Numer. Math. 57(5-7) (2007), pp. 672-685. doi: 10.1016/j.apnum.2006.07.029
-
(2007)
Appl. Numer. Math
, vol.57
, Issue.5-7
, pp. 672-685
-
-
Wu, M.1
Wang, L.2
Song, Y.3
-
16
-
-
0029721297
-
Numerical methods for generalized least squares problems
-
J.Y. Yuan, Numerical methods for generalized least squares problems, J. Comput. Appl. Math. 66(1) (1996), pp. 571-584. doi: 10.1016/0377-0427(95)00167-0
-
(1996)
J. Comput. Appl. Math
, vol.66
, Issue.1
, pp. 571-584
-
-
Yuan, J.Y.1
-
17
-
-
0039064056
-
Convergence of the generalized AOR method
-
J.Y. Yuan and X.-Q. Jin, Convergence of the generalized AOR method, Appl. Math. Comput. 99(1) (1999), pp. 35-46. doi: 10.1016/S0096-3003(97)10175-8
-
(1999)
Appl. Math. Comput
, vol.99
, Issue.1
, pp. 35-46
-
-
Yuan, J.Y.1
Jin, X.-Q.2
-
18
-
-
84866595630
-
Comparison results on the preconditioned GAOR method for generalized least squares problems
-
J.H. Yun, Comparison results on the preconditioned GAOR method for generalized least squares problems, Int. J. Comput. Math. 89(15) (2012), pp. 2094-2105. doi: 10.1080/00207160.2012.702898
-
(2012)
Int. J. Comput. Math
, vol.89
, Issue.15
, pp. 2094-2105
-
-
Yun, J.H.1
-
19
-
-
56449089510
-
Preconditioned GAOR methods for solving weighted linear least squares problems
-
X. Zhou, Y. Song, L. Wang, and Q. Liu, Preconditioned GAOR methods for solving weighted linear least squares problems, J. Comput. Appl. Math. 224(1) (2009), pp. 242-249. doi: 10.1016/j.cam.2008.04.034
-
(2009)
J. Comput. Appl. Math
, vol.224
, Issue.1
, pp. 242-249
-
-
Zhou, X.1
Song, Y.2
Wang, L.3
Liu, Q.4
|