메뉴 건너뛰기




Volumn 61, Issue 3, 2014, Pages 145-151

De-identification of health records using Anonym: Effectiveness and robustness across datasets

Author keywords

Conditional random fields; De identification; Health records; Pattern matching

Indexed keywords

OPTICAL CHARACTER RECOGNITION; PATTERN MATCHING;

EID: 84904305048     PISSN: 09333657     EISSN: 18732860     Source Type: Journal    
DOI: 10.1016/j.artmed.2014.03.006     Document Type: Article
Times cited : (20)

References (18)
  • 1
    • 70349467729 scopus 로고    scopus 로고
    • What can natural language processing do for clinical decision support?
    • Demner-Fushman D., Chapman W., McDonald C. What can natural language processing do for clinical decision support?. J Biomed Inform 2009, 42(5):760-761.
    • (2009) J Biomed Inform , vol.42 , Issue.5 , pp. 760-761
    • Demner-Fushman, D.1    Chapman, W.2    McDonald, C.3
  • 2
    • 59349088021 scopus 로고    scopus 로고
    • Perspectives for medical informatics. Reusing the electronic medical record for clinical research
    • Prokosch H., Ganslandt T. Perspectives for medical informatics. Reusing the electronic medical record for clinical research. Methods Inform Med 2009, 48(1):38-44.
    • (2009) Methods Inform Med , vol.48 , Issue.1 , pp. 38-44
    • Prokosch, H.1    Ganslandt, T.2
  • 3
    • 78149297858 scopus 로고    scopus 로고
    • Privacy and the use of health data for research
    • O'Keefe C., Connolly C. Privacy and the use of health data for research. Med J Austr 2010, 193(9):537-541.
    • (2010) Med J Austr , vol.193 , Issue.9 , pp. 537-541
    • O'Keefe, C.1    Connolly, C.2
  • 4
    • 33745562886 scopus 로고    scopus 로고
    • Assessing the difficulty and time cost of de-identification in clinical narratives
    • Dorr D., Phillips W., Phansalkar S., Sims S., Hurdle J. Assessing the difficulty and time cost of de-identification in clinical narratives. Methods Inform Med 2006, 45(3):246-252.
    • (2006) Methods Inform Med , vol.45 , Issue.3 , pp. 246-252
    • Dorr, D.1    Phillips, W.2    Phansalkar, S.3    Sims, S.4    Hurdle, J.5
  • 5
    • 34548508913 scopus 로고    scopus 로고
    • Evaluating the state-of-the-art in automatic de-identification
    • Uzuner O., Luo Y., Szolovits P. Evaluating the state-of-the-art in automatic de-identification. J Am Med Inform Assoc 2007, 14(5):550-563.
    • (2007) J Am Med Inform Assoc , vol.14 , Issue.5 , pp. 550-563
    • Uzuner, O.1    Luo, Y.2    Szolovits, P.3
  • 8
    • 77955080124 scopus 로고    scopus 로고
    • Automatic de-identification of textual documents in the electronic health record: a review of recent research
    • Meystre S., Friedlin F., South B., Shen S., Samore M. Automatic de-identification of textual documents in the electronic health record: a review of recent research. BMC Med Res Methodol 2010, 10(1):70-71.
    • (2010) BMC Med Res Methodol , vol.10 , Issue.1 , pp. 70-71
    • Meystre, S.1    Friedlin, F.2    South, B.3    Shen, S.4    Samore, M.5
  • 10
    • 84881374654 scopus 로고    scopus 로고
    • Bootstrapping a de-identification system for narrative patient records: cost-performance tradeoffs
    • Hanauer D., Aberdeen J., Bayer S., Wellner B., Clark C., Zheng K., et al. Bootstrapping a de-identification system for narrative patient records: cost-performance tradeoffs. Int J Med Inform 2013, 82:821-831.
    • (2013) Int J Med Inform , vol.82 , pp. 821-831
    • Hanauer, D.1    Aberdeen, J.2    Bayer, S.3    Wellner, B.4    Clark, C.5    Zheng, K.6
  • 11
    • 84904344246 scopus 로고    scopus 로고
    • De-identifying health records by means of active learning. In: Elhadad N, Hauskrecht M, editors. ICML workshop on machine learning for clinical data analysis. Edinburgh, Scotland, UK
    • Boström H, Dalianis H. De-identifying health records by means of active learning. In: Elhadad N, Hauskrecht M, editors. ICML workshop on machine learning for clinical data analysis. Edinburgh, Scotland, UK; 2012, pp. 1-4.
    • (2012) , pp. 1-4
    • Boström, H.1    Dalianis, H.2
  • 14
    • 47749122510 scopus 로고    scopus 로고
    • A survey of named entity recognition and classification
    • Nadeau D., Sekine S. A survey of named entity recognition and classification. Lingvist Investig 2007, 30(1):3-26.
    • (2007) Lingvist Investig , vol.30 , Issue.1 , pp. 3-26
    • Nadeau, D.1    Sekine, S.2
  • 15
    • 0142192295 scopus 로고    scopus 로고
    • Conditional random fields: probabilistic models for segmenting and labeling sequence data
    • C. Brodley, A. Pohoreckyj Danyluk (Eds.)
    • Lafferty J., McCallum A., Pereira F. Conditional random fields: probabilistic models for segmenting and labeling sequence data. Proceedings of the 18th international conference on machine learning 2001, 282-289. C. Brodley, A. Pohoreckyj Danyluk (Eds.).
    • (2001) Proceedings of the 18th international conference on machine learning , pp. 282-289
    • Lafferty, J.1    McCallum, A.2    Pereira, F.3
  • 16
    • 85045072379 scopus 로고    scopus 로고
    • Ranking algorithms for named-entity extraction: boosting and the voted perceptron
    • Association for Computational Linguistics, Philadelphia, PA (USA), E. Charniak, D. Lin (Eds.)
    • Collins M. Ranking algorithms for named-entity extraction: boosting and the voted perceptron. Proceedings of the 40th annual meeting on association for computational linguistics 2002, 489-496. Association for Computational Linguistics, Philadelphia, PA (USA). E. Charniak, D. Lin (Eds.).
    • (2002) Proceedings of the 40th annual meeting on association for computational linguistics , pp. 489-496
    • Collins, M.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.