메뉴 건너뛰기




Volumn 24, Issue 5, 2014, Pages 693-707

An improved SAEM algorithm for maximum likelihood estimation in mixtures of non linear mixed effects models

Author keywords

Maximum likelihood estimation; Mixture models; Monolix; Non linear mixed effects model; SAEM algorithm

Indexed keywords


EID: 84904264130     PISSN: 09603174     EISSN: None     Source Type: Journal    
DOI: 10.1007/s11222-013-9396-2     Document Type: Article
Times cited : (19)

References (23)
  • 1
    • 77957599284 scopus 로고    scopus 로고
    • Construction of Bayesian deformable models via a stochastic approximation algorithm: a convergence study
    • Allassonnière, S., Kuhn, E., Trouvé, A.: Construction of Bayesian deformable models via a stochastic approximation algorithm: a convergence study. Bernoulli 16, 641-678 (2010).
    • (2010) Bernoulli , vol.16 , pp. 641-678
    • Allassonnière, S.1    Kuhn, E.2    Trouvé, A.3
  • 2
    • 0027453616 scopus 로고
    • Model-based Gaussian and non Gaussian clustering
    • Banfield, J. D., Raftery, A. E.: Model-based Gaussian and non Gaussian clustering. Biometrics 49, 803-821 (1993).
    • (1993) Biometrics , vol.49 , pp. 803-821
    • Banfield, J.D.1    Raftery, A.E.2
  • 3
    • 0029305528 scopus 로고
    • Gaussian parsimonious clustering models
    • Celeux, G., Govaert, G.: Gaussian parsimonious clustering models. Pattern Recognit. 28, 781-793 (1995).
    • (1995) Pattern Recognit. , vol.28 , pp. 781-793
    • Celeux, G.1    Govaert, G.2
  • 4
    • 2242491935 scopus 로고    scopus 로고
    • Computational and inferential difficulties with mixtures posterior distribution
    • Celeux, G., Hurn, M., Robert, C.: Computational and inferential difficulties with mixtures posterior distribution. J. Am. Stat. Assoc. 95(3), 957-979 (2000).
    • (2000) J. Am. Stat. Assoc. , vol.95 , Issue.3 , pp. 957-979
    • Celeux, G.1    Hurn, M.2    Robert, C.3
  • 5
    • 0027315761 scopus 로고
    • Some simple methods for estimating intraindividual variability in nonlinear random effects models
    • Davidian, M., Giltinan, D. M.: Some simple methods for estimating intraindividual variability in nonlinear random effects models. Biometrics 49, 59-73 (1993).
    • (1993) Biometrics , vol.49 , pp. 59-73
    • Davidian, M.1    Giltinan, D.M.2
  • 7
    • 0033243858 scopus 로고    scopus 로고
    • Convergence of a stochastic approximation version of the EM algorithm
    • Delyon, B., Lavielle, M., Moulines, E.: Convergence of a stochastic approximation version of the EM algorithm. Ann. Stat. 27, 94-128 (1999).
    • (1999) Ann. Stat. , vol.27 , pp. 94-128
    • Delyon, B.1    Lavielle, M.2    Moulines, E.3
  • 8
    • 0002629270 scopus 로고
    • Maximum likelihood from incomplete data via the EM algorithm
    • Dempster, A. P., Laird, N. M., Rubin, D. B.: Maximum likelihood from incomplete data via the EM algorithm. Suppl. J. R. Stat. Soc. 39(1), 1-38 (1977).
    • (1977) Suppl. J. R. Stat. Soc. , vol.39 , Issue.1 , pp. 1-38
    • Dempster, A.P.1    Laird, N.M.2    Rubin, D.B.3
  • 10
    • 52549085906 scopus 로고    scopus 로고
    • A nonlinear mixed-effect mixture model for functional mapping of dynamic traits
    • Hou, W., Li, H., Zhang, B., Huang, M., Wu, R.: A nonlinear mixed-effect mixture model for functional mapping of dynamic traits. Heredity 101, 321-328 (2008).
    • (2008) Heredity , vol.101 , pp. 321-328
    • Hou, W.1    Li, H.2    Zhang, B.3    Huang, M.4    Wu, R.5
  • 11
    • 84904245081 scopus 로고    scopus 로고
    • A within-subject normal-mixture model with mixed-effects for analyzing heart rate variability
    • 013
    • Ketchum, J., Best, A., Ramakrishnan, V.: A within-subject normal-mixture model with mixed-effects for analyzing heart rate variability. J. Biometr. Biostat. S7, 013 (2012).
    • (2012) J. Biometr. Biostat. , vol.S7
    • Ketchum, J.1    Best, A.2    Ramakrishnan, V.3
  • 12
    • 13444249563 scopus 로고    scopus 로고
    • Coupling a stochastic approximation version of EM with a MCMC procedure
    • Kuhn, E., Lavielle, M.: Coupling a stochastic approximation version of EM with a MCMC procedure. ESAIM, Probab. Stat. 8, 115-131 (2004).
    • (2004) ESAIM, Probab. Stat. , vol.8 , pp. 115-131
    • Kuhn, E.1    Lavielle, M.2
  • 13
    • 19044400906 scopus 로고    scopus 로고
    • Maximum likelihood estimation in nonlinear mixed effects models
    • Kuhn, E., Lavielle, M.: Maximum likelihood estimation in nonlinear mixed effects models. Comput. Stat. Data Anal. 49, 1020-1038 (2005).
    • (2005) Comput. Stat. Data Anal. , vol.49 , pp. 1020-1038
    • Kuhn, E.1    Lavielle, M.2
  • 15
    • 0025170004 scopus 로고
    • Nonlinear mixed effects models for repeated measures data
    • Lindstrom, M., Bates, D.: Nonlinear mixed effects models for repeated measures data. Biometrics 46, 673-687 (1990).
    • (1990) Biometrics , vol.46 , pp. 673-687
    • Lindstrom, M.1    Bates, D.2
  • 17
    • 33747890494 scopus 로고    scopus 로고
    • A mixture model with mixed effects components for clustering correlated gene-expression profiles
    • Ng, S., McLachlan, G., Wang, K., Ben-Tovim, L., Ng, S.: A mixture model with mixed effects components for clustering correlated gene-expression profiles. Bioinformatics 22, 1745-1752 (2006).
    • (2006) Bioinformatics , vol.22 , pp. 1745-1752
    • Ng, S.1    McLachlan, G.2    Wang, K.3    Ben-Tovim, L.4    Ng, S.5
  • 18
    • 17644379544 scopus 로고    scopus 로고
    • Estimation of linear mixed models with a mixture of distribution for the random effects
    • Proust, C., Jacqmin-Gadda, H.: Estimation of linear mixed models with a mixture of distribution for the random effects. Comput. Methods Programs Biomed. 78(2), 165-173 (2005).
    • (2005) Comput. Methods Programs Biomed. , vol.78 , Issue.2 , pp. 165-173
    • Proust, C.1    Jacqmin-Gadda, H.2
  • 19
    • 21744460005 scopus 로고    scopus 로고
    • Practical Bayesian density estimation using mixtures of normals
    • Roeder, K., Wasserman, L.: Practical Bayesian density estimation using mixtures of normals. J. Am. Stat. Assoc. 92, 894-902 (1997).
    • (1997) J. Am. Stat. Assoc. , vol.92 , pp. 894-902
    • Roeder, K.1    Wasserman, L.2
  • 20
    • 0000569928 scopus 로고    scopus 로고
    • A linear mixed-effects model with heterogeneity in the random-effects population
    • Verbeke, G., Lesaffre, E.: A linear mixed-effects model with heterogeneity in the random-effects population. J. Am. Stat. Assoc. 91(433), 217-221 (1996).
    • (1996) J. Am. Stat. Assoc. , vol.91 , Issue.433 , pp. 217-221
    • Verbeke, G.1    Lesaffre, E.2
  • 21
    • 34547188255 scopus 로고    scopus 로고
    • Non linear random effects mixture models: maximum likelihood estimation via the EM algorithm
    • Wang, X., Schumitzky, A., D'Argenio, D. Z.: Non linear random effects mixture models: maximum likelihood estimation via the EM algorithm. Comput. Stat. Data Anal. 51, 6614-6623 (2007).
    • (2007) Comput. Stat. Data Anal. , vol.51 , pp. 6614-6623
    • Wang, X.1    Schumitzky, A.2    D'Argenio, D.Z.3
  • 22
    • 69449085353 scopus 로고    scopus 로고
    • Population pharmacokinetic/pharmacodynamic mixture models via maximum a posteriori estimation
    • Wang, X., Schumitzky, A., D'Argenio, D. Z.: Population pharmacokinetic/pharmacodynamic mixture models via maximum a posteriori estimation. Comput. Stat. Data Anal. 53, 3907-3915 (2009).
    • (2009) Comput. Stat. Data Anal. , vol.53 , pp. 3907-3915
    • Wang, X.1    Schumitzky, A.2    D'Argenio, D.Z.3
  • 23
    • 84950432017 scopus 로고
    • A Monte Carlo implementation of the EM algorithm and the poor man's data augmentation algorithms
    • Wei, G., Tanner, M.: A Monte Carlo implementation of the EM algorithm and the poor man's data augmentation algorithms. J. Am. Stat. Assoc. 85, 699-704 (1990).
    • (1990) J. Am. Stat. Assoc. , vol.85 , pp. 699-704
    • Wei, G.1    Tanner, M.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.