메뉴 건너뛰기




Volumn 72, Issue , 2014, Pages 484-491

Comparison of particle swarm optimization and other metaheuristics on electricity demand estimation: A case study of Iran

Author keywords

Electricity demand; Mean absolute percentage error; Particle swarm optimization

Indexed keywords

ECONOMICS; ELECTRICITY; ENERGY MANAGEMENT;

EID: 84904199207     PISSN: 03605442     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.energy.2014.05.070     Document Type: Article
Times cited : (38)

References (32)
  • 1
    • 72049088880 scopus 로고    scopus 로고
    • Central bank of islamic republic of Iran
    • Central bank of islamic republic of Iran Report and statistics 2007.
    • (2007) Report and statistics
  • 2
    • 72049112046 scopus 로고    scopus 로고
    • Estimation of electricity demand of Iran using two heuristic algorithms
    • Amjadi M.H., Nezamabadi-pour H., Farsangi M.M. Estimation of electricity demand of Iran using two heuristic algorithms. Energy Convers Manage 2010, 51:493-497.
    • (2010) Energy Convers Manage , vol.51 , pp. 493-497
    • Amjadi, M.H.1    Nezamabadi-pour, H.2    Farsangi, M.M.3
  • 3
    • 78649815601 scopus 로고    scopus 로고
    • Application of PSO (particle swarm optimization) and GA (genetic algorithm) techniques on demand estimation of oil in Iran
    • Assareh E., Behrang M.A., Assari M.R., Ghanbarzadeh A. Application of PSO (particle swarm optimization) and GA (genetic algorithm) techniques on demand estimation of oil in Iran. Energy 2010, 35:5223-5229.
    • (2010) Energy , vol.35 , pp. 5223-5229
    • Assareh, E.1    Behrang, M.A.2    Assari, M.R.3    Ghanbarzadeh, A.4
  • 4
    • 84856291874 scopus 로고    scopus 로고
    • APSO-GA optimal model to estimate primary energy demand of China
    • Yu S., Wei Y.M., Wang K. APSO-GA optimal model to estimate primary energy demand of China. Energy Policy 2012, 42:329-340.
    • (2012) Energy Policy , vol.42 , pp. 329-340
    • Yu, S.1    Wei, Y.M.2    Wang, K.3
  • 5
    • 7544234827 scopus 로고    scopus 로고
    • Electricity estimation using genetic algorithm approach: a case study of Turkey
    • Ozturk H.K., Ceylan H., Canyurt O.E., Hepbasli A. Electricity estimation using genetic algorithm approach: a case study of Turkey. Energy 2005, 30:1003-1012.
    • (2005) Energy , vol.30 , pp. 1003-1012
    • Ozturk, H.K.1    Ceylan, H.2    Canyurt, O.E.3    Hepbasli, A.4
  • 6
    • 44649149565 scopus 로고    scopus 로고
    • Application of genetic algorithm (GA) technique on demand estimation of fossil fuels in Turkey
    • Canyurt O.E., Ozturk H.K. Application of genetic algorithm (GA) technique on demand estimation of fossil fuels in Turkey. Energy Policy 2008, 36:2562-2569.
    • (2008) Energy Policy , vol.36 , pp. 2562-2569
    • Canyurt, O.E.1    Ozturk, H.K.2
  • 7
    • 80053171957 scopus 로고    scopus 로고
    • Anovel hybrid approach based on particle swarm optimization and ant colony algorithm to forecast energy demand of Turkey
    • Kiran M.S., Özceylan E., Gündüz M., Paksoy T. Anovel hybrid approach based on particle swarm optimization and ant colony algorithm to forecast energy demand of Turkey. Energy Convers Manag 2012, 53:75-83.
    • (2012) Energy Convers Manag , vol.53 , pp. 75-83
    • Kiran, M.S.1    Özceylan, E.2    Gündüz, M.3    Paksoy, T.4
  • 8
    • 84867888973 scopus 로고    scopus 로고
    • Swarm intelligence approaches to estimate electricity energy demand in Turkey
    • Kiran M.S., Özceylan E., Gündüz M., Paksoy T. Swarm intelligence approaches to estimate electricity energy demand in Turkey. Knowledge-Based Syst 2012, 36:93-103.
    • (2012) Knowledge-Based Syst , vol.36 , pp. 93-103
    • Kiran, M.S.1    Özceylan, E.2    Gündüz, M.3    Paksoy, T.4
  • 9
    • 84863720895 scopus 로고    scopus 로고
    • Ahybrid procedure for energy demand forecasting in China
    • Yu S.W., Zhu K.J. Ahybrid procedure for energy demand forecasting in China. Energy 2012, 37:396-404.
    • (2012) Energy , vol.37 , pp. 396-404
    • Yu, S.W.1    Zhu, K.J.2
  • 10
    • 84871718651 scopus 로고    scopus 로고
    • Electricity demand estimation using an adaptive neuro-fuzzy network: a case study from the Ontario province - Canada
    • Zahedi G., Azizi S., Bahadori A., Elkamel A., Alwi S.R.W. Electricity demand estimation using an adaptive neuro-fuzzy network: a case study from the Ontario province - Canada. Energy 2013, 49:323-328.
    • (2013) Energy , vol.49 , pp. 323-328
    • Zahedi, G.1    Azizi, S.2    Bahadori, A.3    Elkamel, A.4    Alwi, S.R.W.5
  • 11
    • 44649152880 scopus 로고    scopus 로고
    • Asimulated-based neural network algorithm for forecasting electrical energy consumption in Iran
    • Azadeh A., Ghaderi S.F., Sohrabkhani S. Asimulated-based neural network algorithm for forecasting electrical energy consumption in Iran. Energy Policy 2008, 36:2637-2644.
    • (2008) Energy Policy , vol.36 , pp. 2637-2644
    • Azadeh, A.1    Ghaderi, S.F.2    Sohrabkhani, S.3
  • 12
    • 77953324921 scopus 로고    scopus 로고
    • An integrated fuzzy regression algorithm for energy consumption estimation with non-stationary data: a case study of Iran
    • Azadeh A., Saberi M., Seraj O. An integrated fuzzy regression algorithm for energy consumption estimation with non-stationary data: a case study of Iran. Energy 2010, 35:2351-2366.
    • (2010) Energy , vol.35 , pp. 2351-2366
    • Azadeh, A.1    Saberi, M.2    Seraj, O.3
  • 13
    • 68349135404 scopus 로고    scopus 로고
    • Forecasting the transport energy demand based on PLSR method in China
    • Zhang M., Mu H., Li G., Ning Y. Forecasting the transport energy demand based on PLSR method in China. Energy 2009, 34:1396-1400.
    • (2009) Energy , vol.34 , pp. 1396-1400
    • Zhang, M.1    Mu, H.2    Li, G.3    Ning, Y.4
  • 15
    • 84860841857 scopus 로고    scopus 로고
    • Distributed energy resource short-term scheduling using signaled particle swarm optimization
    • Soares J., Silva M., Sousa T., Vale Z., Morais H. Distributed energy resource short-term scheduling using signaled particle swarm optimization. Energy 2012, 42:466-476.
    • (2012) Energy , vol.42 , pp. 466-476
    • Soares, J.1    Silva, M.2    Sousa, T.3    Vale, Z.4    Morais, H.5
  • 16
    • 84871722990 scopus 로고    scopus 로고
    • Design optimization of single mixed refrigerant natural gas liquefaction process using the particle swarm optimization paradigm with nonlinear constraints
    • Khan M.S., Lee M. Design optimization of single mixed refrigerant natural gas liquefaction process using the particle swarm optimization paradigm with nonlinear constraints. Energy 2013, 49:146-155.
    • (2013) Energy , vol.49 , pp. 146-155
    • Khan, M.S.1    Lee, M.2
  • 17
    • 84856539513 scopus 로고    scopus 로고
    • Varun Aparticle swarm optimization algorithm for optimization of thermal performance of a smooth flat plate solar air heater
    • Siddhartha, Sharma N., Varun Aparticle swarm optimization algorithm for optimization of thermal performance of a smooth flat plate solar air heater. Energy 2012, 38:406-413.
    • (2012) Energy , vol.38 , pp. 406-413
    • Siddhartha, S.N.1
  • 18
    • 84896721435 scopus 로고    scopus 로고
    • Empirical study of particle swarm optimization
    • Shi Y., Eberhart R. Empirical study of particle swarm optimization. Proc Congr Evol Comput 1999, 1945-1950.
    • (1999) Proc Congr Evol Comput , pp. 1945-1950
    • Shi, Y.1    Eberhart, R.2
  • 19
    • 3142669892 scopus 로고    scopus 로고
    • On the computation of all global minimizers through particle swarm optimization
    • Parsopoulos K.E., Vrahatis M.N. On the computation of all global minimizers through particle swarm optimization. IEEE Trans Evol Comput 2004, 8:211-224.
    • (2004) IEEE Trans Evol Comput , vol.8 , pp. 211-224
    • Parsopoulos, K.E.1    Vrahatis, M.N.2
  • 20
    • 84901421400 scopus 로고    scopus 로고
    • The swarm and the queen: towards a deterministic and adaptive particle swarm optimization
    • Clerc M. The swarm and the queen: towards a deterministic and adaptive particle swarm optimization. Proc IEEE Congr Evol Comput 1999, 1951-1957.
    • (1999) Proc IEEE Congr Evol Comput , pp. 1951-1957
    • Clerc, M.1
  • 21
    • 80055004445 scopus 로고    scopus 로고
    • Optimization of PEMFC model parameters with a modified particle swarm optimization
    • Askarzadeh A., Rezazadeh A. Optimization of PEMFC model parameters with a modified particle swarm optimization. Int J Energy Res 2011, 35:1258-1265.
    • (2011) Int J Energy Res , vol.35 , pp. 1258-1265
    • Askarzadeh, A.1    Rezazadeh, A.2
  • 22
    • 33744730797 scopus 로고    scopus 로고
    • Comprehensive learning particle swarm optimizer for global optimization of multimodal functions
    • Liang J.J., Qin A.K., Suganthan P.N., Baskar S. Comprehensive learning particle swarm optimizer for global optimization of multimodal functions. IEE Trans Evol Comput 2006, 10:281-295.
    • (2006) IEE Trans Evol Comput , vol.10 , pp. 281-295
    • Liang, J.J.1    Qin, A.K.2    Suganthan, P.N.3    Baskar, S.4
  • 24
    • 84879015433 scopus 로고    scopus 로고
    • Parameter selection in particle swarm optimization
    • Shi Y., Eberhart R.C. Parameter selection in particle swarm optimization. Lect Notes Comput Sci 1998, 1447:591-600.
    • (1998) Lect Notes Comput Sci , vol.1447 , pp. 591-600
    • Shi, Y.1    Eberhart, R.C.2
  • 25
    • 21144456298 scopus 로고    scopus 로고
    • Optimal choice of parameters for particle swarm optimization
    • Li-ping Z., Huan-jun Y., Shang-xu H. Optimal choice of parameters for particle swarm optimization. JZhejiang Univ Sci 2005, 6:528-534.
    • (2005) JZhejiang Univ Sci , vol.6 , pp. 528-534
    • Li-ping, Z.1    Huan-jun, Y.2    Shang-xu, H.3
  • 27
    • 0037291006 scopus 로고    scopus 로고
    • Ahybrid particle swarm optimization for distribution state estimation
    • Naka S., Genji T., Yura T., Fukuyama Y. Ahybrid particle swarm optimization for distribution state estimation. IEEE Trans Power Syst 2003, 18:60-68.
    • (2003) IEEE Trans Power Syst , vol.18 , pp. 60-68
    • Naka, S.1    Genji, T.2    Yura, T.3    Fukuyama, Y.4
  • 28
    • 0034430526 scopus 로고    scopus 로고
    • Aparticle swarm optimization for reactive power and voltage control considering voltage security assessment
    • Yoshida H., Kawata K., Fukuyama Y., Takayama S., Nakanishi Y. Aparticle swarm optimization for reactive power and voltage control considering voltage security assessment. IEEE Trans Power Syst 2000, 15:1232-1239.
    • (2000) IEEE Trans Power Syst , vol.15 , pp. 1232-1239
    • Yoshida, H.1    Kawata, K.2    Fukuyama, Y.3    Takayama, S.4    Nakanishi, Y.5
  • 30
  • 31
    • 79953669499 scopus 로고    scopus 로고
    • Agrouping-based global harmony search algorithm for modeling of proton exchange membrane fuel cell
    • Askarzadeh A., Rezazadeh A. Agrouping-based global harmony search algorithm for modeling of proton exchange membrane fuel cell. Int J Hydrogen Energy 2011, 36:5047-5053.
    • (2011) Int J Hydrogen Energy , vol.36 , pp. 5047-5053
    • Askarzadeh, A.1    Rezazadeh, A.2
  • 32
    • 84870767174 scopus 로고    scopus 로고
    • Artificial bee swarm optimization algorithm for parameters identification of solar cell models
    • Askarzadeh A., Rezazadeh A. Artificial bee swarm optimization algorithm for parameters identification of solar cell models. Appl Energy 2013, 102:943-949.
    • (2013) Appl Energy , vol.102 , pp. 943-949
    • Askarzadeh, A.1    Rezazadeh, A.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.