메뉴 건너뛰기




Volumn 203, Issue 3, 2014, Pages 735-742

Principles and methods for automated palynology

Author keywords

Automation; Palynology; Pollen counting; Pollen identification; Protocols

Indexed keywords

COMPUTER SIMULATION; IDENTIFICATION METHOD; MICROSCOPY; PALYNOLOGY; POLLEN; SOFTWARE;

EID: 84904015638     PISSN: 0028646X     EISSN: 14698137     Source Type: Journal    
DOI: 10.1111/nph.12848     Document Type: Article
Times cited : (86)

References (43)
  • 4
    • 33846938055 scopus 로고    scopus 로고
    • Introducing a new (freeware) tool for palynology
    • Bush MB, Weng C. 2007. Introducing a new (freeware) tool for palynology. Journal of Biogeography 34: 377-380.
    • (2007) Journal of Biogeography , vol.34 , pp. 377-380
    • Bush, M.B.1    Weng, C.2
  • 6
    • 70349601677 scopus 로고    scopus 로고
    • Counting pollen grains using readily available, free image processing and analysis software
    • Costa CM, Yang S. 2009. Counting pollen grains using readily available, free image processing and analysis software. Annals of Botany 104: 1005-1010.
    • (2009) Annals of Botany , vol.104 , pp. 1005-1010
    • Costa, C.M.1    Yang, S.2
  • 7
    • 0008101522 scopus 로고    scopus 로고
    • The distribution of pollen heteromorphism in Viola: ecological and morphological correlates
    • Dajoz I. 1999. The distribution of pollen heteromorphism in Viola: ecological and morphological correlates. Evolutionary Ecology Research 1: 97-109.
    • (1999) Evolutionary Ecology Research , vol.1 , pp. 97-109
    • Dajoz, I.1
  • 8
    • 11144344518 scopus 로고    scopus 로고
    • Computer-aided identification of allergenic species of Urticaceae pollen
    • De Sa-Otero MP, Gonzalez AP, Rodriguez-Damian M, Cernadas E. 2004. Computer-aided identification of allergenic species of Urticaceae pollen. Grana 43: 224-230.
    • (2004) Grana , vol.43 , pp. 224-230
    • De Sa-Otero, M.P.1    Gonzalez, A.P.2    Rodriguez-Damian, M.3    Cernadas, E.4
  • 10
    • 84891942511 scopus 로고    scopus 로고
    • Neural network based classification of pollen grains. 2013 International Conference on Advances in Computing, Communications and Informatics (ICACCI) 22-25 August 2013. Mysore, India:IEEE - Institute of Electrical and Electronics Engineers
    • Dhawale VR, Tidke JA, Dudul SV. 2013. Neural network based classification of pollen grains. 2013 International Conference on Advances in Computing, Communications and Informatics (ICACCI) 22-25 August 2013. Mysore, India:IEEE - Institute of Electrical and Electronics Engineers, 79-84.
    • (2013) , pp. 79-84
    • Dhawale, V.R.1    Tidke, J.A.2    Dudul, S.V.3
  • 12
    • 0002713003 scopus 로고
    • The problem of pollen recognition
    • In: Clowes MB, Penny JP, eds. Canberra, ACT, Australia: CSIRO
    • Flenley JR. 1968. The problem of pollen recognition. In: Clowes MB, Penny JP, eds. Problems of picture interpretation. Canberra, ACT, Australia: CSIRO, 141-145.
    • (1968) Problems of picture interpretation , pp. 141-145
    • Flenley, J.R.1
  • 13
    • 0038445765 scopus 로고    scopus 로고
    • Some prospects for lake sediment analysis in the 21st century
    • Flenley JR. 2003. Some prospects for lake sediment analysis in the 21st century. Quaternary International 105: 77-80.
    • (2003) Quaternary International , vol.105 , pp. 77-80
    • Flenley, J.R.1
  • 16
    • 84943239212 scopus 로고
    • An automatic volumetric spore trap
    • Hirst JM. 1952. An automatic volumetric spore trap. Annals of Applied Biology 39: 257-265.
    • (1952) Annals of Applied Biology , vol.39 , pp. 257-265
    • Hirst, J.M.1
  • 17
    • 80053173390 scopus 로고    scopus 로고
    • Progress towards an automated trainable pollen location and classifier system for use in the palynology laboratory
    • Holt K, Allen G, Hodgson R, Marsland S, Flenley J. 2011. Progress towards an automated trainable pollen location and classifier system for use in the palynology laboratory. Review of Palynology and Palaeobotany 167: 175-183.
    • (2011) Review of Palynology and Palaeobotany , vol.167 , pp. 175-183
    • Holt, K.1    Allen, G.2    Hodgson, R.3    Marsland, S.4    Flenley, J.5
  • 18
    • 84903939885 scopus 로고    scopus 로고
    • On the pollen detection with photoacoustic imaging
    • Hoshimiya T. 2013. On the pollen detection with photoacoustic imaging. American Journal of Plant Sciences 4: 29-32.
    • (2013) American Journal of Plant Sciences , vol.4 , pp. 29-32
    • Hoshimiya, T.1
  • 20
    • 84883449943 scopus 로고    scopus 로고
    • Semi-automatic segmentation of pollen grains in microscopic images: a tool for three imaging modes
    • Johnsrud S, Yang H, Nayak A, Punyasena SW. 2013. Semi-automatic segmentation of pollen grains in microscopic images: a tool for three imaging modes. Grana 52: 181-191.
    • (2013) Grana , vol.52 , pp. 181-191
    • Johnsrud, S.1    Yang, H.2    Nayak, A.3    Punyasena, S.W.4
  • 21
    • 35648989000 scopus 로고    scopus 로고
    • An algorithm and a device for counting airborne pollen automatically using laser optics
    • Kawashima S, Clot B, Fujita T, Takahashi Y, Nakamura K. 2007. An algorithm and a device for counting airborne pollen automatically using laser optics. Atmospheric Environment 41: 7987-7993.
    • (2007) Atmospheric Environment , vol.41 , pp. 7987-7993
    • Kawashima, S.1    Clot, B.2    Fujita, T.3    Takahashi, Y.4    Nakamura, K.5
  • 22
    • 84871782336 scopus 로고    scopus 로고
    • An expert classification system of pollen of Onopordum using a rough set approach
    • Kaya Y, Mesut P, Erez E, Fidan M. 2013. An expert classification system of pollen of Onopordum using a rough set approach. Review of Palaeobotany and Palynology 189: 50-56.
    • (2013) Review of Palaeobotany and Palynology , vol.189 , pp. 50-56
    • Kaya, Y.1    Mesut, P.2    Erez, E.3    Fidan, M.4
  • 24
    • 0033502142 scopus 로고    scopus 로고
    • Pollen texture identification using neural networks
    • Li P, Flenley JR. 1999. Pollen texture identification using neural networks. Grana 38: 59-64.
    • (1999) Grana , vol.38 , pp. 59-64
    • Li, P.1    Flenley, J.R.2
  • 25
    • 10944224185 scopus 로고    scopus 로고
    • Towards automation of palynology 2: the use of texture measures and neural network analysis for automated identification of optical images of pollen grains
    • Li P, Treloar WJ, Flenley JR, Empson L. 2004. Towards automation of palynology 2: the use of texture measures and neural network analysis for automated identification of optical images of pollen grains. Journal of Quaternary Science 19: 755-762.
    • (2004) Journal of Quaternary Science , vol.19 , pp. 755-762
    • Li, P.1    Treloar, W.J.2    Flenley, J.R.3    Empson, L.4
  • 27
    • 13844265013 scopus 로고
    • The confidence limit is a necessary statistic for relative and absolute pollen data. In: Proceedings of the Fourth International Palynological Conference, Lucknow, India, 1976/77
    • Maher LJ. 1980. The confidence limit is a necessary statistic for relative and absolute pollen data. In: Proceedings of the Fourth International Palynological Conference, Lucknow, India, 1976/77, 152-162.
    • (1980) , pp. 152-162
    • Maher, L.J.1
  • 28
    • 0002943092 scopus 로고
    • The feasibility of identifying paleontological objects with the aid of optical analyzing systems
    • Mirkin GR, Bagdasaryan LL. 1972. The feasibility of identifying paleontological objects with the aid of optical analyzing systems. Paleontology Journal 6: 103-108.
    • (1972) Paleontology Journal , vol.6 , pp. 103-108
    • Mirkin, G.R.1    Bagdasaryan, L.L.2
  • 30
    • 84875633602 scopus 로고    scopus 로고
    • Improving pollen classification with less training effort. Proceedings of the IEEE Workshop on the Applications of Computer Visions (WACV), Clearwater Beach, FL, USA. 17-18 January 2013. Washington, DC, USA: IEEE (Institute of Electrical and Electronics Engineers) Computer Society.
    • Nguyen NR, Donlason-Matasci M, Shin MC. 2013. Improving pollen classification with less training effort. Proceedings of the IEEE Workshop on the Applications of Computer Visions (WACV), Clearwater Beach, FL, USA. 17-18 January 2013. Washington, DC, USA: IEEE (Institute of Electrical and Electronics Engineers) Computer Society.
    • (2013)
    • Nguyen, N.R.1    Donlason-Matasci, M.2    Shin, M.C.3
  • 32
    • 84867401961 scopus 로고    scopus 로고
    • Classifying black and white spruce pollen using layered machine learning
    • Punyasena SW, Tcheng DK, Wesseln C, Mueller PG. 2012. Classifying black and white spruce pollen using layered machine learning. New Phytologist 196: 937-944.
    • (2012) New Phytologist , vol.196 , pp. 937-944
    • Punyasena, S.W.1    Tcheng, D.K.2    Wesseln, C.3    Mueller, P.G.4
  • 34
    • 0036624542 scopus 로고    scopus 로고
    • Automated pollen recognition using 3D volume images from fluorescence microscopy
    • Ronneberger O, Schultz E, Burkhardt H. 2002. Automated pollen recognition using 3D volume images from fluorescence microscopy. Aerobiologia 18: 107-115.
    • (2002) Aerobiologia , vol.18 , pp. 107-115
    • Ronneberger, O.1    Schultz, E.2    Burkhardt, H.3
  • 35
    • 84862183654 scopus 로고    scopus 로고
    • Capturing the surface texture and shape of pollen: a comparison of microscopy techniques
    • Sivaguru M, Mander L, Fried G, Punyasena SW. 2012. Capturing the surface texture and shape of pollen: a comparison of microscopy techniques. PLoS ONE 7: e39129.
    • (2012) PLoS ONE , vol.7
    • Sivaguru, M.1    Mander, L.2    Fried, G.3    Punyasena, S.W.4
  • 37
    • 78650245374 scopus 로고    scopus 로고
    • Pollen characterisation and identification by elastically scattered light
    • Surbek M, Esen C, Schweiger G, Ostendorf A. 2011. Pollen characterisation and identification by elastically scattered light. Journal of Biophotonics 4: 49-56.
    • (2011) Journal of Biophotonics , vol.4 , pp. 49-56
    • Surbek, M.1    Esen, C.2    Schweiger, G.3    Ostendorf, A.4
  • 38
    • 80055056048 scopus 로고    scopus 로고
    • Pollen classification based on geometrical, descriptors and colour features using decorrelation stretching method
    • In: Iliadis L, Maglogiannis I, Papadopoulos H, eds. IFIP Advances in Information and Communications Technology 364. Berlin, Germany: Springer
    • Ticay-Rivas JR, delPozo-Baños M, Travieso CM, Arroyo-Hernández J, Pérez ST, Alonso JB, Mora-Mora F. 2011. Pollen classification based on geometrical, descriptors and colour features using decorrelation stretching method. In: Iliadis L, Maglogiannis I, Papadopoulos H, eds. Artificial Intelligence Applications and Innovations. IFIP Advances in Information and Communications Technology 364. Berlin, Germany: Springer, 342-349.
    • (2011) Artificial Intelligence Applications and Innovations , pp. 342-349
    • Ticay-Rivas, J.R.1    delPozo-Baños, M.2    Travieso, C.M.3    Arroyo-Hernández, J.4    Pérez, S.T.5    Alonso, J.B.6    Mora-Mora, F.7
  • 39
    • 10944269024 scopus 로고    scopus 로고
    • Towards automation of palynology 1: analysis of pollen shape and ornamentation using simple geometric measures, derived from scanning electron microscope images
    • Treloar WJ, Taylor GE, Flenley JR. 2004. Towards automation of palynology 1: analysis of pollen shape and ornamentation using simple geometric measures, derived from scanning electron microscope images. Journal of Quaternary Science 19: 745-754.
    • (2004) Journal of Quaternary Science , vol.19 , pp. 745-754
    • Treloar, W.J.1    Taylor, G.E.2    Flenley, J.R.3
  • 41
    • 0000411414 scopus 로고
    • Preliminary research into possibilities of automated pollen counting
    • Witte HJL. 1988. Preliminary research into possibilities of automated pollen counting. Pollen et Spores 30: 111-124.
    • (1988) Pollen et Spores , vol.30 , pp. 111-124
    • Witte, H.J.L.1
  • 42


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.