메뉴 건너뛰기




Volumn 6, Issue 2, 2014, Pages 359-373

Development of K- means based SVM regression (KSVMR) technique for boiler flue gas estimation

Author keywords

Feature selection; Flue gas mixture; Grid technique prediction error; SVM

Indexed keywords


EID: 84903754912     PISSN: 20856830     EISSN: 20875886     Source Type: Journal    
DOI: 10.15676/ijeei.2014.6.2.10     Document Type: Article
Times cited : (3)

References (35)
  • 1
    • 0033296687 scopus 로고    scopus 로고
    • Fundamental study on Multi-mode Quartz crystal gas sensors
    • S. Goka et al, "Fundamental study on Multi-mode Quartz crystal gas sensors, " IEEE UltrasonicsSymposium, pp. 489-492, 1999.
    • (1999) IEEE UltrasonicsSymposium , pp. 489-492
    • Goka, S.1
  • 2
    • 84984587320 scopus 로고    scopus 로고
    • 3 thin film deposition on Quartz Crystal Resonators for application in gas sensors
    • 3 thin film deposition on Quartz Crystal Resonators for application in gas sensors, " Electronics Symposium 2007, pp. 121-124.
    • (2007) Electronics Symposium , pp. 121-124
    • Boyadjiev, S.I.1
  • 3
    • 84943058727 scopus 로고
    • Detection of hydrogen in ambient air using a coated piezoelectric crystal
    • Toshifumi HOSOYA, et al, "Detection of hydrogen in ambient air using a coated piezoelectric crystal, " Chemistry Letters, pp. 385-388, 1984.
    • (1984) Chemistry Letters , pp. 385-388
    • Hosoya, T.1
  • 4
    • 41449108168 scopus 로고    scopus 로고
    • Exploratory data analysis for industrial safety application
    • M. Vezzoli, et al "Exploratory data analysis for industrial safety application" Sensors and Actuators. B Chemical, 131, pp. 100-109, 2008.
    • (2008) Sensors and Actuators. B Chemical , vol.131 , pp. 100-109
    • Vezzoli, M.1
  • 5
    • 16644369920 scopus 로고    scopus 로고
    • Cryptand/metal ion coated piezoelectric quartz crystal sensors with artificial back propagation neural network analysis for nitrogen dioxide andcarbon monoxide
    • Chia-Wen Kuo, et al "Cryptand/metal ion coated piezoelectric quartz crystal sensors with artificial back propagation neural network analysis for nitrogen dioxide andcarbon monoxide, " Sensors and Actuators B, 106, pp 468-476, 2005.
    • (2005) Sensors and Actuators B , vol.106 , pp. 468-476
    • Kuo, C.-W.1
  • 6
    • 0345040882 scopus 로고    scopus 로고
    • Support Vector Machine applications in Bio-informatics
    • E. Byvatov and G. Schneider, "Support Vector Machine applications in Bio-informatics, " Applied Bio informatics, Vol. 2, pp. 67-77, 2003.
    • (2003) Applied Bio informatics , vol.2 , pp. 67-77
    • Byvatov, E.1    Schneider, G.2
  • 7
    • 0033569406 scopus 로고    scopus 로고
    • Lander, Molecular classification of cancer: Class discovery and class prediction by gene expression monitoring
    • T. R. Golub, D. K. Slonim et al, "Lander, Molecular classification of cancer: class discovery and class prediction by gene expression monitoring, " Science, 286(5439), pp. 531-537, 1999.
    • (1999) Science , vol.286 , Issue.5439 , pp. 531-537
    • Golub, T.R.1    Slonim, D.K.2
  • 8
    • 18244409933 scopus 로고    scopus 로고
    • Diffuse large B-cell lymphoma outcome prediction by gene expression profiling and supervised machine learning
    • M. A. Shipp, K. N. Ross et al, "Diffuse large B-cell lymphoma outcome prediction by gene expression profiling and supervised machine learning, " Nat Med, 8(1), pp. 68-74, 2002.
    • (2002) Nat Med , vol.8 , Issue.1 , pp. 68-74
    • Shipp, M.A.1    Ross, K.N.2
  • 9
    • 85039629062 scopus 로고    scopus 로고
    • Prediction of central nervous system embryonal tumor outcome based on gene expression
    • S. L. Pomereroy et al, "Prediction of central nervous system embryonal tumor outcome based on gene expression, " Nature, 415(24), pp. 431-442, 2002.
    • (2002) Nature , vol.415 , Issue.24 , pp. 431-442
    • Pomereroy, S.L.1
  • 10
    • 0035923521 scopus 로고    scopus 로고
    • Classification of human lung carcinomas by mRNAexpression profiling reveals distinct adeno carcinoma subclasses
    • A. Bhattacharjee, et al, "Classification of human lung carcinomas by mRNAexpression profiling reveals distinct adeno carcinoma subclasses, " Proc. Natl. Acad. Sci. USA 98, pp. 13790-13795, 2001.
    • (2001) Proc. Natl. Acad. Sci. USA , vol.98 , pp. 13790-13795
    • Bhattacharjee, A.1
  • 11
    • 0037207624 scopus 로고    scopus 로고
    • Support vector machines for olfactory signals recognition
    • Distante. C., Ancona N., Siciliano P, "Support vector machines for olfactory signals recognition, " Sensors and Actuators B, 88, pp. 30-39, 2003.
    • (2003) Sensors and Actuators B , vol.88 , pp. 30-39
    • Distante, C.1    Ancona, N.2    Siciliano, P.3
  • 12
    • 0037085623 scopus 로고    scopus 로고
    • Wavelet Transform and Fuzzy ARTMAP Based patternRecognition for Fast Gas Identification Using a Micro-Hotplate Gas Sensor
    • Liobet E, Brefmes J et al, "Wavelet Transform and Fuzzy ARTMAP Based patternRecognition for Fast Gas Identification Using a Micro-Hotplate Gas Sensor, " Sensors and Actuators B, Vol. 83, pp. 238-244, 370.
    • Sensors and Actuators B , vol.83
    • Liobet, E.1    Brefmes, J.2
  • 13
    • 84903771923 scopus 로고    scopus 로고
    • John Wiley and Sons, 2nd Ed
    • Richard O. Duda et al, "Pattern Classification, " John Wiley and Sons, p. 559, 2nd Ed., 2002.
    • (2002) Pattern Classification , pp. 559
    • Duda, R.O.1
  • 14
    • 67349109383 scopus 로고    scopus 로고
    • A novel feature selection techniques for number classification problem using PNN
    • A. Sivakumar, K. Kannan, "A novel feature selection techniques for number classification problem using PNN, " Sensors and Actuators B: Chemical, 139, Issue 2, pp. 280-286, 2009.
    • (2009) Sensors and Actuators B: Chemical , vol.139 , Issue.2 , pp. 280-286
    • Sivakumar, A.1    Kannan, K.2
  • 15
    • 0024123401 scopus 로고
    • Probabilistic Neural Networks for classification, Mapping or Associative Memory
    • June
    • D. F. Specht, 'Probabilistic Neural Networks for classification, Mapping or Associative Memory ', Proceedings, IEEE International conference on Neural Networks, 1, pp. 525-532, June 1988.
    • (1988) Proceedings, IEEE International conference on Neural Networks , vol.1 , pp. 525-532
    • Specht, D.F.1
  • 16
    • 0025206332 scopus 로고
    • Probabilistic Neural Networks
    • D. F. Specht, "Probabilistic Neural Networks, " Neural Networks, Vol. 3, pp. 109-118, 1990.
    • (1990) Neural Networks , vol.3 , pp. 109-118
    • Specht, D.F.1
  • 17
    • 0000840950 scopus 로고
    • Generation of polynomial discriminant functions for pattern recognition
    • D. F. Specht, "Generation of polynomial discriminant functions for pattern recognition, " IEEE Trans on Elec. Computers, Volume EC-16, 1992, pp 308-319.
    • (1992) IEEE Trans on Elec. Computers , vol.EC-16 , pp. 308-319
    • Specht, D.F.1
  • 18
    • 84903785568 scopus 로고
    • Training speed Comparison of Probabilistic Neural Networks with Back-probagation Networks
    • Paris, France, July
    • D. F. Specht and P. D. Shapiro, "Training speed Comparison of Probabilistic Neural Networks with Back-probagation Networks, " Proceedings of the Int. Neural Network conference Vol. 1, pp 440-443, Paris, France, July 1990.
    • (1990) Proceedings of the Int. Neural Network conference , vol.1 , pp. 440-443
    • Specht, D.F.1    Shapiro, P.D.2
  • 19
    • 0026254768 scopus 로고
    • A general regression neural network
    • D. F. Specht, "A general regression neural network" IEEE Trans. Neural Network, 2(6) 568-576, 1991.
    • (1991) IEEE Trans. Neural Network , vol.2 , Issue.6 , pp. 568-576
    • Specht, D.F.1
  • 20
    • 33745276242 scopus 로고    scopus 로고
    • Prediction of soil Composition from CPT data Using General Regression Neural Network
    • Pradeep. U. Kurupetal, "Prediction of soil Composition from CPT data Using General Regression Neural Network" Journal of computing in civil Engineering, ASCE, 281-289, 2006.
    • (2006) Journal of computing in civil Engineering, ASCE , pp. 281-289
    • Kurupetal, P.U.1
  • 22
    • 41449090470 scopus 로고    scopus 로고
    • Qualitative discrimination of the binary gas mixture using combinational structure of the probabilistic and multiplayer neural networks
    • Ali Gulbagetal, "Qualitative discrimination of the binary gas mixture using combinational structure of the probabilistic and multiplayer neural networks, " Sensors and Actuators B. Chemical 131, pp. 196-204, 2008.
    • (2008) Sensors and Actuators B. Chemical , vol.131 , pp. 196-204
    • Gulbagetal, A.1
  • 23
    • 8144229066 scopus 로고
    • Piezoelectric sorption detector
    • H. W. King, Piezoelectric sorption detector, Anal. Chem, 36 (1964), pp. 1735-1739.
    • (1964) Anal. Chem , vol.36 , pp. 1735-1739
    • King, H.W.1
  • 24
    • 0031073303 scopus 로고    scopus 로고
    • Generalized approach to the recognition of structurally similar handwritten characters using multiple expert classifiers
    • Faiahurst Mc, Raliman A. F. R, "Generalized approach to the recognition of structurally similar handwritten characters using multiple expert classifiers, " IEEE Proc. Vision, Image signal Process, 144(1), pp. 15-22, 1997.
    • (1997) IEEE Proc. Vision, Image signal Process , vol.144 , Issue.1 , pp. 15-22
    • Faiahurst, M.1    Raliman, A.F.R.2
  • 26
    • 0000406788 scopus 로고
    • Solving multiclass learning problems via error correctingoutput codes
    • Dietterich T, Bakiri G, "Solving multiclass learning problems via error correctingoutput codes" Journal of Artificial Intelligence, pp 263-286, 1995.
    • (1995) Journal of Artificial Intelligence , pp. 263-286
    • Dietterich, T.1    Bakiri, G.2
  • 27
    • 0028259890 scopus 로고
    • Decision combination in multiple classifier systems
    • Ho, T. K. Hull et al, "Decision combination in multiple classifier systems" IEEE Pattern Anal. Machine Intelligence 16(1), pp 66-75, 1994.
    • (1994) IEEE Pattern Anal. Machine Intelligence , vol.16 , Issue.1 , pp. 66-75
    • Ho, T.K.H.1
  • 28
    • 0000262562 scopus 로고
    • Hierarchial mixture of experts and EM algorithm
    • Jordan M. I, Jacobs R. A, " Hierarchial mixture of experts and EM algorithm" Neural Comput. 6, pp181-214, 1994.
    • (1994) Neural Comput. , vol.6 , pp. 81-214
    • Jordan, M.I.1    Jacobs, R.A.2
  • 29
    • 0028742240 scopus 로고
    • Experience with Adaptive Probabilistic Neural Networks and Adaptive General Regression Neural Networks
    • 0-7803-1901-X/94, 1203-1208
    • F. Specht et al, "Experience with Adaptive Probabilistic Neural Networks and Adaptive General Regression Neural Networks, " IEEE Conference, 0-7803-1901-X/94, 1203-1208, 1994.
    • (1994) IEEE Conference
    • Specht, F.1
  • 30
    • 84995500542 scopus 로고    scopus 로고
    • Forecasting of river flow data with a general regression neural network
    • IAHS publication(no. 272) of the Symposium on
    • M. N. Islam et al, "Forecasting of river flow data with a general regression neural network" IAHS publication(no. 272) of the Symposium on "Integrated Water Resource Management" pp. 285-290, 2001.
    • (2001) Integrated Water Resource Management , pp. 285-290
    • Islam, M.N.1
  • 35
    • 33645744088 scopus 로고    scopus 로고
    • Finding the composition of gas mixtures by a phthalocyanine-coated QCM sensor array and an artificial neural network
    • A. Ozmen., et al, "Finding the composition of gas mixtures by a phthalocyanine-coated QCM sensor array and an artificial neural network, " Sensors and Actuators B, 115, pp. 450-454.
    • Sensors and Actuators B , vol.115 , pp. 450-454
    • Ozmen, A.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.