-
1
-
-
0033667165
-
Synaptic plasticity: Taming the beast
-
doi: 10.1038/81453
-
Abbott, L. F., and Nelson, S. B. (2000). Synaptic plasticity: taming the beast. Nat. Neurosci. 3, 1178-1183. doi: 10.1038/81453
-
(2000)
Nat. Neurosci.
, vol.3
, pp. 1178-1183
-
-
Abbott, L.F.1
Nelson, S.B.2
-
3
-
-
0032535029
-
Synaptic modifications in cultured hippocampal neurons: Dependence on spike timing, synaptic strength, and postsynaptic cell type
-
Bi, G. Q., and Poo, M. M. (1998). Synaptic modifications in cultured hippocampal neurons: dependence on spike timing, synaptic strength, and postsynaptic cell type. J. Neurosci. 18, 10464-10472.
-
(1998)
J. Neurosci.
, vol.18
, pp. 10464-10472
-
-
Bi, G.Q.1
Poo, M.M.2
-
4
-
-
84864010311
-
Excitatory, inhibitory, and structural plasticity produce correlated connectivity in random networks trained to solve paired-stimulus tasks
-
doi: 10.3389/fncom.2011.00037
-
Bourjaily, M. A., and Miller, P. (2011). Excitatory, inhibitory, and structural plasticity produce correlated connectivity in random networks trained to solve paired-stimulus tasks. Front. Comput. Neurosci. 5:37. doi: 10.3389/fncom.2011.00037
-
(2011)
Front. Comput. Neurosci.
, vol.5
, pp. 37
-
-
Bourjaily, M.A.1
Miller, P.2
-
5
-
-
79953030487
-
Coordination of size and number of excitatory and inhibitory synapses results in a balanced structural plasticity along mature hippocampal CA1 dendrites during LTP
-
doi: 10.1002/hipo.20768
-
Bourne, J. N., and Harris, K. M. (2011). Coordination of size and number of excitatory and inhibitory synapses results in a balanced structural plasticity along mature hippocampal CA1 dendrites during LTP. Hippocampus 21, 354-373. doi: 10.1002/hipo.20768
-
(2011)
Hippocampus
, vol.21
, pp. 354-373
-
-
Bourne, J.N.1
Harris, K.M.2
-
6
-
-
77649152514
-
Connectivity reflects coding: A model of voltage-based stdp with homeostasis
-
doi: 10.1038/nn.2479
-
Clopath, C., Busing, L., Vasilaki, E., and Gerstner, W. (2010). Connectivity reflects coding: a model of voltage-based stdp with homeostasis. Nat. Neurosci. 13, 344-352. doi: 10.1038/nn.2479
-
(2010)
Nat. Neurosci.
, vol.13
, pp. 344-352
-
-
Clopath, C.1
Busing, L.2
Vasilaki, E.3
Gerstner, W.4
-
7
-
-
0033360297
-
Plasticity in the intrinsic excitability of cortical pyramidal neurons
-
doi: 10.1038/9165
-
Desai, N. S., Rutherford, L. C., and Turrigiano, G. G. (1999). Plasticity in the intrinsic excitability of cortical pyramidal neurons. Nat. Neurosci. 2, 515-520. doi: 10.1038/9165
-
(1999)
Nat. Neurosci.
, vol.2
, pp. 515-520
-
-
Desai, N.S.1
Rutherford, L.C.2
Turrigiano, G.G.3
-
9
-
-
84899849785
-
Nonlinear dynamics analysis of a self-organizing recurrent neural network: Chaos waning
-
doi: 10.1371/journal.pone.0086962
-
Eser, J., Zheng, P., and Triesch, J. (2014). Nonlinear dynamics analysis of a self-organizing recurrent neural network: chaos waning. PLoS ONE 9:e86962. doi: 10.1371/journal.pone.0086962
-
(2014)
PLoS ONE
, vol.9
-
-
Eser, J.1
Zheng, P.2
Triesch, J.3
-
10
-
-
0036487071
-
Synaptic connections between layer 4 spiny neurone-layer 2/3 pyramidal cell pairs in juvenile rat barrel cortex: Physiology and anatomy of interlaminar signalling within a cortical column
-
doi: 10.1113/jphysiol.2001.012959
-
Feldmeyer, D., Lubke, J., Silver, R. A., and Sakmann, B. (2002). Synaptic connections between layer 4 spiny neurone-layer 2/3 pyramidal cell pairs in juvenile rat barrel cortex: physiology and anatomy of interlaminar signalling within a cortical column. J. Physiol. Lond. 538, 803-822. doi: 10.1113/jphysiol.2001.012959
-
(2002)
J. Physiol. Lond.
, vol.538
, pp. 803-822
-
-
Feldmeyer, D.1
Lubke, J.2
Silver, R.A.3
Sakmann, B.4
-
11
-
-
76849115047
-
Spike-time-dependent plasticity and heterosynaptic competition organize networks to produce long scale-free sequences of neural activity
-
doi: 10.1016/j.neuron.2010.02.003
-
Fiete, I. R., Senn, W., Wang, C. Z. H., and Hahnloser, R. H. R. (2010). Spike-time-dependent plasticity and heterosynaptic competition organize networks to produce long scale-free sequences of neural activity. Neuron 65, 563-576. doi: 10.1016/j.neuron.2010.02.003
-
(2010)
Neuron
, vol.65
, pp. 563-576
-
-
Fiete, I.R.1
Senn, W.2
Wang, C.Z.H.3
Hahnloser, R.H.R.4
-
12
-
-
33751516381
-
Spike-timing-dependent plasticity of inhibitory synapses in the entorhinal cortex
-
doi: 10.1152/jn.00551.2006
-
Haas, J. S., Nowotny, T., and Abarbanel, H. D. I. (2006). Spike-timing-dependent plasticity of inhibitory synapses in the entorhinal cortex. J. Neurophysiol. 96, 3305-3313. doi: 10.1152/jn.00551.2006
-
(2006)
J. Neurophysiol.
, vol.96
, pp. 3305-3313
-
-
Haas, J.S.1
Nowotny, T.2
Abarbanel, H.D.I.3
-
13
-
-
0037026530
-
An ultra-sparse code underlies the generation of neural sequences in a songbird
-
doi: 10.1038/nature00974
-
Hahnloser, R. H. R., Kozhevnikov, A. A., and Fee, M. S. (2002). An ultra-sparse code underlies the generation of neural sequences in a songbird. Nature 419, 65-70. doi: 10.1038/nature00974
-
(2002)
Nature
, vol.419
, pp. 65-70
-
-
Hahnloser, R.H.R.1
Kozhevnikov, A.A.2
Fee, M.S.3
-
14
-
-
0030229039
-
Learning synfire chains: Turning noise into signal
-
doi: 10.1142/S0129065796000427
-
Hertz, J., and Prugel-Bennett, A. (1996). Learning synfire chains: turning noise into signal. Int. J. Neural Syst. 7, 445-450. doi: 10.1142/S0129065796000427
-
(1996)
Int. J. Neural Syst.
, vol.7
, pp. 445-450
-
-
Hertz, J.1
Prugel-Bennett, A.2
-
15
-
-
38649090761
-
STDP provides the substrate for igniting synfire chains by spatiotemporal input patterns
-
doi: 10.1162/neco.2007.11-05-043
-
Hosaka, R., Araki, O., and Ikeguchi, T. (2008). STDP provides the substrate for igniting synfire chains by spatiotemporal input patterns. Neural Comput. 20, 415-435. doi: 10.1162/neco.2007.11-05-043
-
(2008)
Neural Comput.
, vol.20
, pp. 415-435
-
-
Hosaka, R.1
Araki, O.2
Ikeguchi, T.3
-
16
-
-
51449107175
-
Emergence of preferred firing sequences in large spiking neural networks during simulated neuronal development
-
doi: 10.1142/S0129065708001580
-
Iglesias, J., and Villa, A. E. P. (2008). Emergence of preferred firing sequences in large spiking neural networks during simulated neuronal development. Int. J. Neural Syst. 18, 267-277. doi: 10.1142/S0129065708001580
-
(2008)
Int. J. Neural Syst.
, vol.18
, pp. 267-277
-
-
Iglesias, J.1
Villa, A.E.P.2
-
17
-
-
33644898137
-
Polychronization: Computation with spikes
-
doi: 10.1162/089976606775093882
-
Izhikevich, E. M. (2006). Polychronization: computation with spikes. Neural Comput. 18, 245-282. doi: 10.1162/089976606775093882
-
(2006)
Neural Comput.
, vol.18
, pp. 245-282
-
-
Izhikevich, E.M.1
-
18
-
-
33846900838
-
Structural plasticity: Rewiring the brain
-
doi: 10.1016/j.cub.2006.12.022
-
Johansen-Berg, H. (2007). Structural plasticity: rewiring the brain. Curr. Biol. 17, R141-R144. doi: 10.1016/j.cub.2006.12.022
-
(2007)
Curr. Biol.
, vol.17
-
-
Johansen-Berg, H.1
-
19
-
-
40349098772
-
Development of neural circuitry for precise temporal sequences through spontaneous activity, axon remodeling, and synaptic plasticity
-
doi: 10.1371/journal.pone.0000723
-
Jun, J., and Jin, D. (2007). Development of neural circuitry for precise temporal sequences through spontaneous activity, axon remodeling, and synaptic plasticity. PLoS ONE 2:e723. doi: 10.1371/journal.pone.0000723
-
(2007)
PLoS ONE
, vol.2
-
-
Jun, J.1
Jin, D.2
-
20
-
-
84855214183
-
Limits to the development of feed-forward structures in large recurrent neuronal networks
-
doi: 10.3389/fncom.2010.00160
-
Kunkel, S., Diesmann, M., and Morrison, A. (2011). Limits to the development of feed-forward structures in large recurrent neuronal networks. Front. Comput. Neurosci. 4:160. doi: 10.3389/fncom.2010.00160
-
(2011)
Front. Comput. Neurosci.
, vol.4
, pp. 160
-
-
Kunkel, S.1
Diesmann, M.2
Morrison, A.3
-
21
-
-
77957343940
-
SORN: A self-organizing recurrent neural network
-
doi: 10.3389/neuro.10.023.2009
-
Lazar, A., Pipa, G., and Triesch, J. (2009). SORN: a self-organizing recurrent neural network. Front. Comput. Neurosci. 3:23. doi: 10.3389/neuro.10.023.2009
-
(2009)
Front. Comput. Neurosci.
, vol.3
, pp. 23
-
-
Lazar, A.1
Pipa, G.2
Triesch, J.3
-
22
-
-
79959353033
-
Emerging bayesian priors in a self-organizing recurrent network
-
in, (Espoo)
-
Lazar, A., Pipa, G., and Triesch, J. (2011). "Emerging bayesian priors in a self-organizing recurrent network, " in Artificial Neural Networks and Machine Learning-Icann 2011, Pt II, Vol. 6792 (Espoo), 127-134.
-
(2011)
Artificial Neural Networks and Machine Learning-Icann 2011, Pt II
, vol.6792
, pp. 127-134
-
-
Lazar, A.1
Pipa, G.2
Triesch, J.3
-
23
-
-
58549118757
-
The excitatory neuronal network of the c2 barrel column in mouse primary somatosensory cortex
-
doi: 10.1016/j.neuron.2008.12.020
-
Lefort, S., Tomm, C., Sarria, J. C. F., and Petersen, C. C. H. (2009). The excitatory neuronal network of the c2 barrel column in mouse primary somatosensory cortex. Neuron 61, 301-316. doi: 10.1016/j.neuron.2008.12.020
-
(2009)
Neuron
, vol.61
, pp. 301-316
-
-
Lefort, S.1
Tomm, C.2
Sarria, J.C.F.3
Petersen, C.C.H.4
-
24
-
-
0034761668
-
Distributed synchrony in a cell assembly of spiking neurons
-
doi: 10.1016/S0893-6080(01)00044-2
-
Levy, N., Horn, D., Meilijson, I., and Ruppin, E. (2001). Distributed synchrony in a cell assembly of spiking neurons. Neural Netw. 14, 815-824. doi: 10.1016/S0893-6080(01)00044-2
-
(2001)
Neural Netw.
, vol.14
, pp. 815-824
-
-
Levy, N.1
Horn, D.2
Meilijson, I.3
Ruppin, E.4
-
25
-
-
33846053551
-
Sequential structure of neocortical spontaneous activity in vivo
-
doi: 10.1073/pnas.0605643104
-
Luczak, A., Bartho, P., Marguet, S. L., Buzsaki, G., and Harris, K. D. (2007). Sequential structure of neocortical spontaneous activity in vivo. Proc. Natl. Acad. Sci. U.S.A. 104, 347-352. doi: 10.1073/pnas.0605643104
-
(2007)
Proc. Natl. Acad. Sci. U.S.A.
, vol.104
, pp. 347-352
-
-
Luczak, A.1
Bartho, P.2
Marguet, S.L.3
Buzsaki, G.4
Harris, K.D.5
-
26
-
-
0035819076
-
Dynamics of spontaneous activity in neocortical slices
-
doi: 10.1016/S0896-6273(01)00518-9
-
Mao, B. Q., Hamzei-Sichani, F., Aronov, D., Froemke, R. C., and Yuste, R. (2001). Dynamics of spontaneous activity in neocortical slices. Neuron 32, 883-898. doi: 10.1016/S0896-6273(01)00518-9
-
(2001)
Neuron
, vol.32
, pp. 883-898
-
-
Mao, B.Q.1
Hamzei-Sichani, F.2
Aronov, D.3
Froemke, R.C.4
Yuste, R.5
-
27
-
-
0031012615
-
Regulation of synaptic efficacy by coincidence of postsynaptic aps and epsps
-
doi: 10.1126/science.275.5297.213
-
Markram, H., Lubke, J., Frotscher, M., and Sakmann, B. (1997). Regulation of synaptic efficacy by coincidence of postsynaptic aps and epsps. Science 275, 213-215. doi: 10.1126/science.275.5297.213
-
(1997)
Science
, vol.275
, pp. 213-215
-
-
Markram, H.1
Lubke, J.2
Frotscher, M.3
Sakmann, B.4
-
28
-
-
33748898872
-
Triplets of spikes in a model of spike timing-dependent plasticity
-
doi: 10.1523/JNEUROSCI.1425-06.2006
-
Pfister, J.-P., and Gerstner, W. (2006). Triplets of spikes in a model of spike timing-dependent plasticity. J. Neurosci. 26, 9673-9682. doi: 10.1523/JNEUROSCI.1425-06.2006
-
(2006)
J. Neurosci.
, vol.26
, pp. 9673-9682
-
-
Pfister, J.-P.1
Gerstner, W.2
-
29
-
-
0031820640
-
Spatiotemporal structure of cortical activity: Properties and behavioral relevance
-
Prut, Y., Vaadia, E., Bergman, H., Haalman, I., Slovin, H., and Abeles, M. (1998). Spatiotemporal structure of cortical activity: Properties and behavioral relevance. J. Neurophysiol. 79, 2857-2874.
-
(1998)
J. Neurophysiol.
, vol.79
, pp. 2857-2874
-
-
Prut, Y.1
Vaadia, E.2
Bergman, H.3
Haalman, I.4
Slovin, H.5
Abeles, M.6
-
30
-
-
33751239741
-
Temporally precise cortical firing patterns are associated with distinct action segments
-
doi: 10.1152/jn.00798.2005
-
Shmiel, T., Drori, R., Shmiel, O., Ben-Shaul, Y., Nadasdy, Z., Shemesh, M., et al. (2006). Temporally precise cortical firing patterns are associated with distinct action segments. J. Neurophysiol. 96, 2645-2652. doi: 10.1152/jn.00798.2005
-
(2006)
J. Neurophysiol.
, vol.96
, pp. 2645-2652
-
-
Shmiel, T.1
Drori, R.2
Shmiel, O.3
Ben-Shaul, Y.4
Nadasdy, Z.5
Shemesh, M.6
-
31
-
-
18044383304
-
Highly nonrandom features of synaptic connectivity in local cortical circuits
-
doi: 10.1371/journal.pbio.0030350
-
Song, S., Sjostrom, P. J., Reigl, M., Nelson, S., and Chklovskii, D. B. (2005). Highly nonrandom features of synaptic connectivity in local cortical circuits. PLoS Biol. 3:e350. doi: 10.1371/journal.pbio.0030350
-
(2005)
PLoS Biol.
, vol.3
-
-
Song, S.1
Sjostrom, P.J.2
Reigl, M.3
Nelson, S.4
Chklovskii, D.B.5
-
32
-
-
0032567928
-
Activity-dependent scaling of quantal amplitude in neocortical neurons
-
doi: 10.1038/36103
-
Turrigiano, G. G., Leslie, K. R., Desai, N. S., Rutherford, L. C., and Nelson, S. B. (1998). Activity-dependent scaling of quantal amplitude in neocortical neurons. Nature 391, 892-896. doi: 10.1038/36103
-
(1998)
Nature
, vol.391
, pp. 892-896
-
-
Turrigiano, G.G.1
Leslie, K.R.2
Desai, N.S.3
Rutherford, L.C.4
Nelson, S.B.5
-
33
-
-
84879898707
-
Inhibitory synaptic plasticity: Spike timing-dependence and putative network function
-
doi: 10.3389/fncir.2013.00119
-
Vogels, T. P., Froemke, R. C., Doyon, N., Gilson, M., Haas, J. S., Liu, R., et al. (2013). Inhibitory synaptic plasticity: spike timing-dependence and putative network function. Front. Neural Circuits 7:119. doi: 10.3389/fncir.2013.00119
-
(2013)
Front. Neural Circuits
, vol.7
, pp. 119
-
-
Vogels, T.P.1
Froemke, R.C.2
Doyon, N.3
Gilson, M.4
Haas, J.S.5
Liu, R.6
-
34
-
-
83755181763
-
Inhibitory plasticity balances excitation and inhibition in sensory pathways and memory networks
-
doi: 10.1126/science.1211095
-
Vogels, T. P., Sprekeler, H., Zenke, F., Clopath, C., and Gerstner, W. (2011). Inhibitory plasticity balances excitation and inhibition in sensory pathways and memory networks. Science 334, 1569-1573. doi: 10.1126/science.1211095
-
(2011)
Science
, vol.334
, pp. 1569-1573
-
-
Vogels, T.P.1
Sprekeler, H.2
Zenke, F.3
Clopath, C.4
Gerstner, W.5
-
35
-
-
85088717592
-
Triphasic spike-timing-dependent plasticity organizes networks to produce robust sequences of neural activity
-
doi: 10.3389/fncom.2012.00088
-
Waddington, A., Appleby, P. A., De Kamps, M., and Cohen, N. (2012). Triphasic spike-timing-dependent plasticity organizes networks to produce robust sequences of neural activity. Front. Comput. Neurosci. 6:88. doi: 10.3389/fncom.2012.00088
-
(2012)
Front. Comput. Neurosci.
, vol.6
, pp. 88
-
-
Waddington, A.1
Appleby, P.A.2
De Kamps, M.3
Cohen, N.4
-
36
-
-
33646191268
-
A faster algorithm for detecting network motifs
-
doi: 10.1007/11557067-14
-
Wernicke, S. (2005). A faster algorithm for detecting network motifs. Allgorithms Bioniform. Proc. 3692, 165-177. doi: 10.1007/11557067-14
-
(2005)
Allgorithms Bioniform. Proc.
, vol.3692
, pp. 165-177
-
-
Wernicke, S.1
-
37
-
-
58149387084
-
Principles of long-term dynamics of dendritic spines
-
doi: 10.1523/JNEUROSCI.0603-08.2008
-
Yasumatsu, N., Matsuzaki, M., Miyazaki, T., Noguchi, J., and Kasai, H. (2008). Principles of long-term dynamics of dendritic spines. J. Neurosci. 28, 13592-13608. doi: 10.1523/JNEUROSCI.0603-08.2008
-
(2008)
J. Neurosci.
, vol.28
, pp. 13592-13608
-
-
Yasumatsu, N.1
Matsuzaki, M.2
Miyazaki, T.3
Noguchi, J.4
Kasai, H.5
-
38
-
-
0242300203
-
The other side of the engram: Experience-driven changes in neuronal intrinsic excitability
-
doi: 10.1038/nrn1248
-
Zhang, W., and Linden, D. J. (2003). The other side of the engram: experience-driven changes in neuronal intrinsic excitability. Nat. Rev. Neurosci. 4, 885-900. doi: 10.1038/nrn1248
-
(2003)
Nat. Rev. Neurosci.
, vol.4
, pp. 885-900
-
-
Zhang, W.1
Linden, D.J.2
-
39
-
-
84873511304
-
Network self-organization explains the statistics and dynamics of synaptic connection strengths in cortex
-
doi: 10.1371/journal.pcbi.1002848
-
Zheng, P., Dimitrakakis, C., and Triesch, J. (2013). Network self-organization explains the statistics and dynamics of synaptic connection strengths in cortex. PLoS Comput. Biol. 9:e1002848. doi: 10.1371/journal.pcbi.1002848
-
(2013)
PLoS Comput. Biol.
, vol.9
-
-
Zheng, P.1
Dimitrakakis, C.2
Triesch, J.3
|