메뉴 건너뛰기




Volumn 13, Issue 2, 2014, Pages

Binary PSO and rough set theory for feature selection: A multi-objective filter based approach

Author keywords

Feature selection; multi objective optimization; particle swarm optimization; rough set theory

Indexed keywords

DECISION TREES; FEATURE EXTRACTION; MULTIOBJECTIVE OPTIMIZATION; PARTICLE SWARM OPTIMIZATION (PSO); ROUGH SET THEORY;

EID: 84903730957     PISSN: 14690268     EISSN: None     Source Type: Journal    
DOI: 10.1142/S1469026814500096     Document Type: Article
Times cited : (50)

References (41)
  • 1
    • 33745561205 scopus 로고    scopus 로고
    • An introduction to variable and feature selection
    • I. Guyon and A. Elisseeff, An introduction to variable and feature selection, J. Mach. Learn. Res. 3 (2003) 1157-1182.
    • (2003) J. Mach. Learn. Res. , vol.3 , pp. 1157-1182
    • Guyon, I.1    Elisseeff, A.2
  • 2
    • 0013326060 scopus 로고    scopus 로고
    • Feature selection for classification
    • M. Dash and H. Liu, Feature selection for classification, Intell. Data Anal. 1(4) (1997) 131-156.
    • (1997) Intell. Data Anal. , vol.1 , Issue.4 , pp. 131-156
    • Dash, M.1    Liu, H.2
  • 3
    • 0029535737 scopus 로고
    • Particle swarm optimization
    • The University of Western Australia, Perth, Western Australia
    • J. Kennedy and R. Eberhart, Particle swarm optimization, IEEE Int. Conf. Neural Networks, The University of Western Australia, Perth, Western Australia, Vol. 4, pp. 1942-1948, 1995.
    • (1995) IEEE Int. Conf. Neural Networks , vol.4 , pp. 1942-1948
    • Kennedy, J.1    Eberhart, R.2
  • 5
    • 0031674071 scopus 로고    scopus 로고
    • Matching algorithms to problems: An experimental test of the particle swarm and some genetic algorithms on the multimodal problem generator
    • Anchorage, Alaska, USA
    • J. Kennedy and W. Spears, Matching algorithms to problems: An experimental test of the particle swarm and some genetic algorithms on the multimodal problem generator, in IEEE Congr. Evolutionary Computation (CEC'98), Anchorage, Alaska, USA, pp. 78-83, 1998.
    • (1998) IEEE Congr. Evolutionary Computation (CEC'98) , pp. 78-83
    • Kennedy, J.1    Spears, W.2
  • 6
    • 79958252965 scopus 로고    scopus 로고
    • An improved particle swarm optimization for feature selection
    • Y. Liu, G. Wang, H. Chen and H. Dong, An improved particle swarm optimization for feature selection, J. Bionic Eng. 8(2) (2011) 191-200.
    • (2011) J. Bionic Eng. , vol.8 , Issue.2 , pp. 191-200
    • Liu, Y.1    Wang, G.2    Chen, H.3    Dong, H.4
  • 8
    • 68949155378 scopus 로고    scopus 로고
    • Feature subset selection in large dimensionality domains
    • I. A. Gheyas and L. S. Smith, Feature subset selection in large dimensionality domains, Pattern Recogn. 43(1) (2010) 5-13.
    • (2010) Pattern Recogn. , vol.43 , Issue.1 , pp. 5-13
    • Gheyas, I.A.1    Smith, L.S.2
  • 10
    • 33845523839 scopus 로고    scopus 로고
    • Feature selection based on rough sets and particle swarm optimization
    • DOI 10.1016/j.patrec.2006.09.003, PII S0167865506002327
    • X. Wang, J. Yang, X. Teng, W. Xia and R. Jensen, Feature selection based on rough sets and particle swarm optimization, Pattern Recogn. Lett. 28(4) (2007) 459-471. (Pubitemid 44920436)
    • (2007) Pattern Recognition Letters , vol.28 , Issue.4 , pp. 459-471
    • Wang, X.1    Yang, J.2    Teng, X.3    Xia, W.4    Jensen, R.5
  • 11
    • 45849092954 scopus 로고    scopus 로고
    • Attribute reduction in decision-theoretic rough set models
    • Y. Yao and Y. Zhao, Attribute reduction in decision-theoretic rough set models, Inf. Sci. 178(17) (2008) 3356-3373.
    • (2008) Inf. Sci. , vol.178 , Issue.17 , pp. 3356-3373
    • Yao, Y.1    Zhao, Y.2
  • 12
    • 79952809060 scopus 로고    scopus 로고
    • Feature selection with intelligent dynamic swarm and rough set
    • C. Bae, W.-C. Yeh, Y. Y. Chung and S.-L. Liu, Feature selection with intelligent dynamic swarm and rough set, Expert Syst. Appl. 37(10) (2010) 7026-7032.
    • (2010) Expert Syst. Appl. , vol.37 , Issue.10 , pp. 7026-7032
    • Bae, C.1    Yeh, W.-C.2    Chung, Y.Y.3    Liu, S.-L.4
  • 13
    • 72449177821 scopus 로고    scopus 로고
    • A rough set approach to feature selection based on ant colony optimization
    • Y. Chen, D. Miao and R. Wang, A rough set approach to feature selection based on ant colony optimization, Pattern Recogn. Lett. 31(3) (2010) 226-233.
    • (2010) Pattern Recogn. Lett. , vol.31 , Issue.3 , pp. 226-233
    • Chen, Y.1    Miao, D.2    Wang, R.3
  • 16
    • 84881571608 scopus 로고    scopus 로고
    • Binary particle swarm optimisation and rough set theory for dimension reduction in classification
    • Cancun, Mexico
    • L. Cervante, B. Xue, L. Shang and M. Zhang, Binary particle swarm optimisation and rough set theory for dimension reduction in classification, in IEEE Congr. Evolutionary Computation (CEC'13), Cancun, Mexico, pp. 2428-2435, 2013.
    • (2013) IEEE Congr. Evolutionary Computation (CEC'13) , pp. 2428-2435
    • Cervante, L.1    Xue, B.2    Shang, L.3    Zhang, M.4
  • 18
    • 0015125457 scopus 로고
    • A direct method of nonparametric measurement selection
    • A. Whitney, A direct method of nonparametric measurement selection, IEEE Trans. Comput. C-20(9) (1971) 1100-1103.
    • (1971) IEEE Trans. Comput. , vol.C-20 , Issue.9 , pp. 1100-1103
    • Whitney, A.1
  • 19
    • 84914813506 scopus 로고
    • On the effectiveness of receptors in recognition systems
    • T. Marill and D. Green, On the effectiveness of receptors in recognition systems, IEEE Trans. Inf. Theory 9(1) (1963) 11-17.
    • (1963) IEEE Trans. Inf. Theory , vol.9 , Issue.1 , pp. 11-17
    • Marill, T.1    Green, D.2
  • 20
    • 0002526012 scopus 로고
    • On selecting features for pattern classifier
    • (Coronado, Calif, USA)
    • S. Stearns, On selecting features for pattern classifier, in Proc. 3rd Int. Conf. Pattern Recognition (Coronado, Calif, USA), pp. 71-75, 1976.
    • (1976) Proc. 3rd Int. Conf. Pattern Recognition , pp. 71-75
    • Stearns, S.1
  • 21
    • 0028547556 scopus 로고
    • Floating search methods in feature selection
    • P. Pudil, J. Novovicova and J. V. Kittler, Floating search methods in feature selection, Pattern Recogn. Lett. 15(11) (1994) 1119-1125.
    • (1994) Pattern Recogn. Lett. , vol.15 , Issue.11 , pp. 1119-1125
    • Pudil, P.1    Novovicova, J.2    Kittler, J.V.3
  • 26
    • 54249083003 scopus 로고    scopus 로고
    • An improved feature selection method based on ant colony optimization (aco) evaluated on face recognition system
    • H. R. Kanan and K. Faez, An improved feature selection method based on ant colony optimization (aco) evaluated on face recognition system, Appl. Math. Comput. 205(2) (2008) 716-725.
    • (2008) Appl. Math. Comput. , vol.205 , Issue.2 , pp. 716-725
    • Kanan, H.R.1    Faez, K.2
  • 27
    • 48749115050 scopus 로고    scopus 로고
    • Particle swarm optimization for pap-smear diagnosis
    • Y. Marinakis, M. Marinaki and G. Dounias, Particle swarm optimization for pap-smear diagnosis, Expert Syst. Appl. 35(4) (2008) 1645-1656.
    • (2008) Expert Syst. Appl. , vol.35 , Issue.4 , pp. 1645-1656
    • Marinakis, Y.1    Marinaki, M.2    Dounias, G.3
  • 28
    • 50149108380 scopus 로고    scopus 로고
    • A distributed PSO-SVM hybrid system with feature selection and parameter optimization
    • C. L. Huang and J. F. Dun, A distributed PSO-SVM hybrid system with feature selection and parameter optimization, Appl. Soft Comput. 8 (2008) 1381-1391.
    • (2008) Appl. Soft Comput. , vol.8 , pp. 1381-1391
    • Huang, C.L.1    Dun, J.F.2
  • 30
    • 37549011765 scopus 로고    scopus 로고
    • Improved binary PSO for feature selection using gene expression data
    • L. Y. Chuang, H. W. Chang, C. J. Tu and C. H. Yang, Improved binary PSO for feature selection using gene expression data, Comput. Biol. Chem. 32(29) (2008) 29-38.
    • (2008) Comput. Biol. Chem. , vol.32 , Issue.29 , pp. 29-38
    • Chuang, L.Y.1    Chang, H.W.2    Tu, C.J.3    Yang, C.H.4
  • 32
    • 0028496468 scopus 로고
    • Learning boolean concepts in the presence of many irrelevant features
    • H. Almuallim and T. G. Dietterich, Learning boolean concepts in the presence of many irrelevant features, Artif. Intell. 69 (1994) 279-305.
    • (1994) Artif. Intell. , vol.69 , pp. 279-305
    • Almuallim, H.1    Dietterich, T.G.2
  • 33
    • 85146422424 scopus 로고
    • A practical approach to feature selection
    • Aberdeen, Scotland
    • K. Kira and L. A. Rendell, A practical approach to feature selection, Assorted Conf. and Workshops, Aberdeen, Scotland, pp. 249-256, 1992.
    • (1992) Assorted Conf. and Workshops , pp. 249-256
    • Kira, K.1    Rendell, L.A.2
  • 34
    • 8844244184 scopus 로고    scopus 로고
    • Genetic algorithm with fuzzy fitness function for feature selection
    • L'Aquila, Italy
    • B. Chakraborty, Genetic algorithm with fuzzy fitness function for feature selection, in IEEE Int. Symp. Industrial Electronics (ISIE'02), L'Aquila, Italy, Vol. 1, pp. 315-319, 2002.
    • (2002) IEEE Int. Symp. Industrial Electronics (ISIE'02) , vol.1 , pp. 315-319
    • Chakraborty, B.1
  • 35
    • 60349114690 scopus 로고    scopus 로고
    • Feature subset selection by particle swarm optimization with fuzzy fitness function
    • Xiamen, China
    • B. Chakraborty, Feature subset selection by particle swarm optimization with fuzzy fitness function, in 3rd Int. Conf. Intelligent System and Knowledge Engineering (ISKE'08), Xiamen, China, Vol. 1, pp. 1038-1042, 2008.
    • (2008) 3rd Int. Conf. Intelligent System and Knowledge Engineering (ISKE'08) , vol.1 , pp. 1038-1042
    • Chakraborty, B.1
  • 37
    • 40249088411 scopus 로고    scopus 로고
    • Feature-level fusion by multi-objective binary particle swarm based unbiased feature selection for optimized sensor system design
    • DOI 10.1109/MFI.2006.265670, 4042087, 2006 IEEE International Conference on Multisensor Fusion and Integration for Intelligent Systems, MFI
    • K. Iswandy and A. Koenig, Feature-level fusion by multi-objective binary particle swarm based unbiased feature selection for optimized sensor system design, in IEEE Int. Conf. Multisensor Fusion and Integration for Intelligent Systems, Heidelberg, Germany, pp. 365-370, 2006. (Pubitemid 351409455)
    • (2006) IEEE International Conference on Multisensor Fusion and Integration for Intelligent Systems , pp. 365-370
    • Iswandy, K.1    Koenig, A.2
  • 38
    • 24344480582 scopus 로고    scopus 로고
    • Improving PSO-based Multi-Objective optimization using crowding, mutation and ε-dominance
    • Evolutionary Multi-Criterion Optimization - Third International Conference, EMO 2005
    • M. R. Sierra and C. A. C. Coello, Improving PSO-based multi-objective optimization using crowding, mutation and epsilon-dominance, in Proc. Third Int. Conf. Evolutionary Multi-Criterion Optimization, Guanajuato, Mexico, pp. 505-519, 2005. (Pubitemid 41251786)
    • (2005) Lecture Notes in Computer Science , vol.3410 , pp. 505-519
    • Sierra, M.R.1    Coello Coello, C.A.2
  • 39
    • 84886567160 scopus 로고    scopus 로고
    • Irvine, CA: University of California, School of Information and Computer Science
    • K. Bache and M. Lichman, UCI Machine Learning Repository [http://archive.ics.uci.edu/ml]. Irvine, CA: University of California, School of Information and Computer Science (2013).
    • (2013) UCI Machine Learning Repository
    • Bache, K.1    Lichman, M.2
  • 41
    • 84871342606 scopus 로고    scopus 로고
    • A multi-objective particle swarm optimisation for filter based feature selection in classification problems
    • B. Xue, L. Cervante, L. Shang, W. N. Browne and M. Zhang, A multi-objective particle swarm optimisation for filter based feature selection in classification problems, Connect. Sci. 24 (2012) 91-116.
    • (2012) Connect. Sci. , vol.24 , pp. 91-116
    • Xue, B.1    Cervante, L.2    Shang, L.3    Browne, W.N.4    Zhang, M.5


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.