-
1
-
-
0036846383
-
Effects of quarantine in six endemic models for infectious diseases
-
H. Herbert, Z. Ma, and S. Liao Effects of quarantine in six endemic models for infectious diseases Math. Biosci. 180 2002 141 160
-
(2002)
Math. Biosci.
, vol.180
, pp. 141-160
-
-
Herbert, H.1
Ma, Z.2
Liao, S.3
-
2
-
-
0018041874
-
A generalization of the Kermack-McKendrick deterministic epidemic model
-
DOI 10.1016/0025-5564(78)90006-8
-
V. Capasso, and G. Serio A generalization of the Kermack-Mckendrick deterministic epidemic model Math. Biosci. 42 1978 43 61 (Pubitemid 9117153)
-
(1978)
Mathematical Biosciences
, vol.42
, Issue.1-2
, pp. 43-61
-
-
Capasso, V.1
Serio, G.2
-
3
-
-
0037429355
-
Dynamical behavior of an epidemic model with a nonlinear incidence rate
-
DOI 10.1016/S0022-0396(02)00089-X, PII S002203960200089X
-
S. Ruan, and W. Wang Dynamical behavior of an epidemic model with a nonlinear incidence rate J. Differ. Equ. 188 2003 135 163 (Pubitemid 36233149)
-
(2003)
Journal of Differential Equations
, vol.188
, Issue.1
, pp. 135-163
-
-
Ruan, S.1
Wang, W.2
-
4
-
-
0022298258
-
Influence of nonlinear incidence rates upon the behavior of SIRS epidemiological models
-
DOI 10.1007/BF00276956
-
W.M. Liu, S.A. Levin, and Y. Iwasa Influence of nonlinear incidence rates upon the behavior of SIRS epidemiological models J. Math. Biol. 23 1986 187 204 (Pubitemid 16153721)
-
(1985)
Journal of Mathematical Biology
, vol.23
, Issue.2
, pp. 187-204
-
-
Liu, W.-M.1
Levin, S.A.2
Iwasa, Y.3
-
5
-
-
34547134261
-
Global analysis of an epidemic model with nonmonotone incidence rate
-
DOI 10.1016/j.mbs.2006.09.025, PII S0025556406001866
-
D. Xiao, and S. Ruan Global analysis of an epidemic model with nonmonotone incidence rate Math. Biosci. 208 2007 419 429 (Pubitemid 47101853)
-
(2007)
Mathematical Biosciences
, vol.208
, Issue.2
, pp. 419-429
-
-
Xiao, D.1
Ruan, S.2
-
6
-
-
84855868838
-
Complete global stability for an SIRS epidemic model with generalized non-linear incidence and vaccination
-
A. Lahrouz, L. Omari, D. Kiouach, and A. Belmaati Complete global stability for an SIRS epidemic model with generalized non-linear incidence and vaccination Appl. Math. Comput. 218 2012 6519 6525
-
(2012)
Appl. Math. Comput.
, vol.218
, pp. 6519-6525
-
-
Lahrouz, A.1
Omari, L.2
Kiouach, D.3
Belmaati, A.4
-
8
-
-
12744262698
-
A note on nonautonomous logistic equation with random perturbation
-
D. Jiang, and N. Shi A note on nonautonomous logistic equation with random perturbation J. Math. Anal. Appl. 303 2005 164 172
-
(2005)
J. Math. Anal. Appl.
, vol.303
, pp. 164-172
-
-
Jiang, D.1
Shi, N.2
-
9
-
-
37449001667
-
Global stability and stochastic permanence of a non-autonomous logistic equation with random perturbation
-
D. Jiang, N. Shi, and X. Li Global stability and stochastic permanence of a non-autonomous logistic equation with random perturbation J. Math. Anal. Appl. 340 2008 588 597
-
(2008)
J. Math. Anal. Appl.
, vol.340
, pp. 588-597
-
-
Jiang, D.1
Shi, N.2
Li, X.3
-
10
-
-
68049121846
-
Global stability of two-group SIR model with random perturbation
-
J. Yu, D. Jiang, and N. Shi Global stability of two-group SIR model with random perturbation J. Math. Anal. Appl. 360 2009 235 244
-
(2009)
J. Math. Anal. Appl.
, vol.360
, pp. 235-244
-
-
Yu, J.1
Jiang, D.2
Shi, N.3
-
11
-
-
67649440965
-
Stability of SIRS system with random perturbations
-
Q. Lu Stability of SIRS system with random perturbations Phys. A: Stat. Mech. Appl. 388 18 2009 3677 3686
-
(2009)
Phys. A: Stat. Mech. Appl.
, vol.388
, Issue.18
, pp. 3677-3686
-
-
Lu, Q.1
-
12
-
-
77957911002
-
Extinction and permanence in a stochastic nonautonomous population system
-
M. Liu, and K. Wang Extinction and permanence in a stochastic nonautonomous population system Appl. Math. Lett. 23 2010 1464 1467
-
(2010)
Appl. Math. Lett.
, vol.23
, pp. 1464-1467
-
-
Liu, M.1
Wang, K.2
-
13
-
-
79955810355
-
Stationary distribution of stochastic population systems
-
X. Mao Stationary distribution of stochastic population systems Syst. Control Lett. 60 2011 398 405
-
(2011)
Syst. Control Lett.
, vol.60
, pp. 398-405
-
-
Mao, X.1
-
14
-
-
79955469778
-
Asymptotic behavior of global positive solution to a stochastic SIR model
-
D. Jiang, J. Yu, C. Ji, and N. Shi Asymptotic behavior of global positive solution to a stochastic SIR model Math. Comput. Model. 54 2011 221 232
-
(2011)
Math. Comput. Model.
, vol.54
, pp. 221-232
-
-
Jiang, D.1
Yu, J.2
Ji, C.3
Shi, N.4
-
15
-
-
84455169402
-
The ergodicity and extinction of stochastically perturbed SIR and SEIR epidemic models with saturated incidence
-
Q. Yang, D. Jiang, N. Shi, and C. Ji The ergodicity and extinction of stochastically perturbed SIR and SEIR epidemic models with saturated incidence J. Math. Anal. Appl. 388 2012 248 271
-
(2012)
J. Math. Anal. Appl.
, vol.388
, pp. 248-271
-
-
Yang, Q.1
Jiang, D.2
Shi, N.3
Ji, C.4
-
16
-
-
84865615809
-
Stationary distribution, ergodicity and extinction of a stochastic generalized logistic system
-
M. Liu, and K. Wang Stationary distribution, ergodicity and extinction of a stochastic generalized logistic system Appl. Math. Lett. 25 2012 1980 1985
-
(2012)
Appl. Math. Lett.
, vol.25
, pp. 1980-1985
-
-
Liu, M.1
Wang, K.2
-
17
-
-
84855243526
-
Stability analysis of an epidemic model with diffusion and stochastic perturbation
-
F. Rao, W. Wang, and Z. Li Stability analysis of an epidemic model with diffusion and stochastic perturbation Commun. Nonlinear Sci. Numer. Simul. 17 2012 2551 2563
-
(2012)
Commun. Nonlinear Sci. Numer. Simul.
, vol.17
, pp. 2551-2563
-
-
Rao, F.1
Wang, W.2
Li, Z.3
-
18
-
-
84873535867
-
Extinction and stationary distribution of a stochastic SIRS epidemic model with non-linear incidence
-
A. Lahrouz, L. Omari, and D. Kiouach Extinction and stationary distribution of a stochastic SIRS epidemic model with non-linear incidence Stat. Probab. Lett. 83 2013 960 968
-
(2013)
Stat. Probab. Lett.
, vol.83
, pp. 960-968
-
-
Lahrouz, A.1
Omari, L.2
Kiouach, D.3
-
19
-
-
84883134834
-
The extinction and persistence of the stochastic SIS epidemic model with vaccination
-
Y. Zhao, D. Jiang, and D. ORegan The extinction and persistence of the stochastic SIS epidemic model with vaccination Physica A 392 2013 4916 4927
-
(2013)
Physica A
, vol.392
, pp. 4916-4927
-
-
Zhao, Y.1
Jiang, D.2
Oregan, D.3
-
20
-
-
84872368703
-
The stationary distribution and ergodicity of a stochastic generalized logistic system
-
D. Li The stationary distribution and ergodicity of a stochastic generalized logistic system Stat. Probab. Lett. 83 2013 580 583
-
(2013)
Stat. Probab. Lett.
, vol.83
, pp. 580-583
-
-
Li, D.1
-
21
-
-
84887260929
-
Stationary distribution of a stochastic SIS epidemic model with vaccination
-
Y. Lin, D. Jiang, and S. Wang Stationary distribution of a stochastic SIS epidemic model with vaccination Physica A 394 2014 187 197
-
(2014)
Physica A
, vol.394
, pp. 187-197
-
-
Lin, Y.1
Jiang, D.2
Wang, S.3
-
22
-
-
0031997110
-
Stability of epidemic model with time delays influenced by stochastic perturbations
-
PII S0378475497001067
-
E. Beretta, V. Kolmanovskii, and L. Shaikhet Stability of epidemic model with time delays influenced by stochastic perturbations Math. Comput. Simul. 45 1998 269 277 (Pubitemid 128451281)
-
(1998)
Mathematics and Computers in Simulation
, vol.45
, Issue.3-4
, pp. 269-277
-
-
Beretta, E.1
Kolmanovskii, V.2
Shaikhet, L.3
-
23
-
-
0036176248
-
On the stability properties of a stochastic model for phage-bacteria interaction in open marine environment
-
DOI 10.1016/S0025-5564(01)00089-X, PII S002555640100089X
-
M. Carletti On the stability properties of a stochastic model for phage-bacteria interaction in open marine environment Math. Biosci. 175 2002 117 131 (Pubitemid 34171162)
-
(2002)
Mathematical Biosciences
, vol.175
, Issue.2
, pp. 117-131
-
-
Carletti, M.1
-
24
-
-
79952616171
-
Multigroup SIR epidemic model with stochastic perturbation
-
C. Ji, D. Jiang, and N. Shi Multigroup SIR epidemic model with stochastic perturbation Phys. A. Stat. Mech. Appl. 390 2011 1747 1762
-
(2011)
Phys. A. Stat. Mech. Appl.
, vol.390
, pp. 1747-1762
-
-
Ji, C.1
Jiang, D.2
Shi, N.3
-
25
-
-
84855233210
-
Stochastically asymptotically stability of the multi-group SEIR and SIR models with random perturbation
-
C. Yuan, D. Jiang, D. ORegan, and R. Agarwal Stochastically asymptotically stability of the multi-group SEIR and SIR models with random perturbation Commun. Nonlinear Sci Numer. Simul. 17 2012 2501 2516
-
(2012)
Commun. Nonlinear Sci Numer. Simul.
, vol.17
, pp. 2501-2516
-
-
Yuan, C.1
Jiang, D.2
Oregan, D.3
Agarwal, R.4
-
26
-
-
3042531306
-
Dynamical behavior of Lotka-Volterra competition systems: Non-autonomous bistable case and the effect of telegraph noise
-
DOI 10.1016/j.cam.2004.02.001, PII S0377042704000871
-
N.H. Du, R. Kon, K. Sato, and Y. Takeuchi Dynamical behavior of Lotka-Volterra competition systems: non-autonomous bistable case and the effect of telegraph noise J. Comput. Appl. Math. 170 2004 399 422 (Pubitemid 38825808)
-
(2004)
Journal of Computational and Applied Mathematics
, vol.171
, Issue.1-2
, pp. 399-422
-
-
Du, N.H.1
Kon, R.2
Sato, K.3
Takeuchi, Y.4
-
27
-
-
33751110460
-
Evolution of predator-prey systems described by a Lotka-Volterra equation under random environment
-
DOI 10.1016/j.jmaa.2005.11.009, PII S0022247X0501142X
-
Y. Takeuchi, N.H. Du, N.T. Hieu, and K. Sato Evolution of predator-prey systems described by a Lotka-Volterra equation under random environment J. Math. Anal. Appl. 323 2006 938 957 (Pubitemid 44767105)
-
(2006)
Journal of Mathematical Analysis and Applications
, vol.323
, Issue.2
, pp. 938-957
-
-
Takeuchi, Y.1
Du, N.H.2
Hieu, N.T.3
Sato, K.4
-
28
-
-
84862005170
-
The SIS epidemic model with Markovian switching
-
A. Gray, D. Greenhalgh, and X. Mao The SIS epidemic model with Markovian switching J. Math. Anal. Appl. 394 2012 496 516
-
(2012)
J. Math. Anal. Appl.
, vol.394
, pp. 496-516
-
-
Gray, A.1
Greenhalgh, D.2
Mao, X.3
-
29
-
-
84866406854
-
Stochastic SIRS model under regime switching
-
Z. Han, and J. Zhao Stochastic SIRS model under regime switching Nonlinear Anal. Real World Appl. 14 2013 352 364
-
(2013)
Nonlinear Anal. Real World Appl.
, vol.14
, pp. 352-364
-
-
Han, Z.1
Zhao, J.2
-
35
-
-
47049084345
-
Asymptotic properties of hybrid diffusion systems
-
C. Zhu, and G. Yin Asymptotic properties of hybrid diffusion systems SIAM J. Control Optim. 46 2007 1155 1179
-
(2007)
SIAM J. Control Optim.
, vol.46
, pp. 1155-1179
-
-
Zhu, C.1
Yin, G.2
-
36
-
-
79960370338
-
A stochastic differential equation SIS epidemic model
-
A. Gray, D. Greenhalgh, L. Hu, X. Mao, and J. Pan A stochastic differential equation SIS epidemic model SIAM J. Appl. Math. 71 2011 876 902
-
(2011)
SIAM J. Appl. Math.
, vol.71
, pp. 876-902
-
-
Gray, A.1
Greenhalgh, D.2
Hu, L.3
Mao, X.4
Pan, J.5
|