메뉴 건너뛰기




Volumn 3, Issue , 2013, Pages 2668-2674

Mapping mangrove species using worldview-2 satellite data

Author keywords

Artificial neural network; Fusion; Mangrove; World view 2

Indexed keywords

FUSION REACTIONS; IMAGE RECONSTRUCTION; NEURAL NETWORKS; REMOTE SENSING;

EID: 84903435724     PISSN: None     EISSN: None     Source Type: Conference Proceeding    
DOI: None     Document Type: Conference Paper
Times cited : (1)

References (18)
  • 1
    • 77952881448 scopus 로고    scopus 로고
    • Multispectral and hyper spectral remote sensing for identification and mapping of wetland vegetation: A review
    • 10.1007/s11273-009-9169-z
    • Adam E., Mutanga O., Rugege D., 2009, Multispectral and hyper spectral remote sensing for identification and mapping of wetland vegetation: A review, Wetlands Ecology and Management, 10.1007/s11273-009-9169-z.
    • (2009) Wetlands Ecology and Management
    • Adam, E.1    Mutanga, O.2    Rugege, D.3
  • 2
    • 84883003995 scopus 로고    scopus 로고
    • MS + Pan image fusion by an enhanced Gram-Schmidt spectral sharpening
    • Z. Bochenek (ed.) -2007 Millpress, Rotterdam, ISBN 978-90-5966-053-3
    • Aiazzi B., Baronti S., Selva M Alparone L., 2007, MS + Pan image fusion by an enhanced Gram-Schmidt spectral sharpening, New Developments and Challenges in Remote Sensing, Z. Bochenek (ed.) -2007 Millpress, Rotterdam, ISBN 978-90-5966-053-3.
    • (2007) New Developments and Challenges in Remote Sensing
    • Aiazzi, B.1    Baronti, S.2    Selva, M.3    Alparone, L.4
  • 4
    • 34948847553 scopus 로고    scopus 로고
    • Comparison of neural network and maximum likelihood high resolution image classification for weed detection in crops: Applications in precision agriculture
    • Eddy P.R., 2006, Comparison of Neural Network and Maximum Likelihood High Resolution Image Classification for Weed Detection in Crops: Applications in Precision Agriculture, IEEE International Conference on Geoscience and Remote Sensing Symposium, 2006. IGARSS 2006. 116- 119.
    • (2006) IEEE International Conference on Geo Science and Remote Sensing Symposium, 2006, IGARSS 2006 , pp. 116-119
    • Eddy, P.R.1
  • 5
    • 48749090436 scopus 로고    scopus 로고
    • date of access 5 Sept 2013
    • FAO (Food and Agriculture Organization of the United Nations), 2007, The world's mangroves 1980-2005. Available online http://www.fao.org/docrep/010/ a1427e/a1427e00.htm (date of access 5 Sept 2013).
    • (2007) The World's Mangroves 1980-2005
  • 6
    • 0028874010 scopus 로고
    • Using prior knowledge in artificial neural network classification with a minimal training set
    • Foody G.M., 1995, Using prior knowledge in artificial neural network classification with a minimal training set, International Journal of Remote Sensing, (16) 301-312.
    • (1995) International Journal of Remote Sensing , Issue.16 , pp. 301-312
    • Foody, G.M.1
  • 7
    • 84903461291 scopus 로고    scopus 로고
    • Mangrove threats and changes
    • (Eds) Omar, H. Aziz, K.A. Shamsudin and Barizan, R.S.R, Forest Research Institute Malaysia, Sungai Buloh: Gemilang Press Sdn. Bhd
    • Hamdan Omar, 2012, Mangrove Threats and Changes. In Status of Mangroves in Peninsular Malaysia. (Eds) Omar, H., Aziz, K.A., Shamsudin and Barizan, R.S.R, Forest Research Institute Malaysia, Sungai Buloh: Gemilang Press Sdn. Bhd. 148 pp.
    • (2012) Status of Mangroves in Peninsular Malaysia , pp. 148
    • Omar, H.1
  • 8
    • 84856762488 scopus 로고    scopus 로고
    • Hyperspectral data for mangrove species mapping: A comparison of pixel-based and object-based approach
    • Kamal M., Phinn S., 2011, Hyperspectral Data for Mangrove Species Mapping: A Comparison of Pixel-Based and Object-Based Approach. Remote Sensing (3) 2222-2242.
    • (2011) Remote Sensing , Issue.3 , pp. 2222-2242
    • Kamal, M.1    Phinn, S.2
  • 9
    • 76849090094 scopus 로고    scopus 로고
    • Perpixel and sub-pixel classifications of high resolution satellite data for mangrove species mapping
    • Kanniah K.D., Ng Su Wai, Alvin Lau Meng Shin and Abd. Wahid Rasib, 2007, Perpixel and sub-pixel classifications of high resolution satellite data for mangrove species mapping, Applied GIS, (3) 1-22.
    • (2007) Applied GIS , Issue.3 , pp. 1-22
    • Kanniah, K.D.1    Wai, N.S.2    Shin, A.L.M.3    Rasib, A.W.4
  • 12
    • 84903471449 scopus 로고    scopus 로고
    • Management of mangroves in Peninsular Malaysia
    • (Eds) Omar, H. Aziz, K.A. Shamsudin and Barizan, R.S.R, Forest Research Institute Malaysia, Sungai Buloh: Gemilang Press Sdn. Bhd
    • Suhaili R, 2012, Management of mangroves in Peninsular Malaysia. In Status of Mangroves in Peninsular Malaysia. (Eds) Omar, H., Aziz, K.A., Shamsudin and Barizan, R.S.R, Forest Research Institute Malaysia, Sungai Buloh: Gemilang Press Sdn. Bhd. 148 pp.
    • (2012) Status of Mangroves in Peninsular Malaysia , pp. 148
    • Suhaili, R.1
  • 13
    • 83155178369 scopus 로고    scopus 로고
    • Comparison of Neural Network and Maximum Likelihood classifiers for land cover classification using landsat multispectral data
    • Tan K.C., Lim H.S., Jafri M.Z.M., 2011, Comparison of Neural Network and Maximum Likelihood classifiers for land cover classification using landsat multispectral data, Open Systems (ICOS), 2011 IEEE Conference, 241 - 244.
    • (2011) Open Systems (ICOS), 2011 IEEE Conference , pp. 241-244
    • Tan, K.C.1    Lim, H.S.2    Jafri, M.Z.M.3
  • 15
    • 2942752404 scopus 로고    scopus 로고
    • Comparison of IKONOS and quick bird images for mapping mangrove species on the Caribbean coast of panama
    • Wang L., Wayne P., Sousa P.G., Gregory S.B. 2004, Comparison of IKONOS and Quick Bird images for mapping mangrove species on the Caribbean coast of Panama, Remote Sensing of Environment, (91) 432-440.
    • (2004) Remote Sensing of Environment , Issue.91 , pp. 432-440
    • Wang, L.1    Wayne, P.2    Sousa, P.G.3    Gregory, S.B.4
  • 16
    • 77958511566 scopus 로고    scopus 로고
    • An automated artificial neural network system for land use/land cover classification from Landsat TM imagery
    • Yuan H., Van Der Wiele C. F., Khorram S., 2009, An Automated Artificial Neural Network System for Land Use/Land Cover Classification from Landsat TM Imagery, Remote Sensing, (1) 243-265.
    • (2009) Remote Sensing , Issue.1 , pp. 243-265
    • Yuan, H.1    Van Der Wiele, C.F.2    Khorram, S.3
  • 17
    • 78649769625 scopus 로고    scopus 로고
    • Performance analyzing of high resolution pan-sharpening techniques: Increasing image quality for classification using supervised kernel support vector machine
    • Yuhendra J.T., Sumantyo and Kuze H., 2011, Performance analyzing of high resolution pan-sharpening techniques: Increasing image quality for classification using supervised kernel support vector machine. Research Journal of Information Technology, (3) 12-23.
    • (2011) Research Journal of Information Technology , Issue.3 , pp. 12-23
    • Yuhendra, J.T.1    Sumantyo2    Kuze, H.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.