메뉴 건너뛰기




Volumn 215, Issue , 2014, Pages 176-183

Piezoelectric rubber films for autonomous physiological monitoring systems

Author keywords

Autonomous system; Cellular PDMS microstructure; Elasticity; Energy harvesting; Physiological monitoring; Piezoelectric rubber film

Indexed keywords

AMPLIFIERS (ELECTRONIC); CRYSTALLOGRAPHY; ELASTICITY; ENERGY HARVESTING; MICROCHANNELS; PATIENT MONITORING; PHYSIOLOGY; RUBBER FILMS; SILICONES;

EID: 84903318252     PISSN: 09244247     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.sna.2013.08.044     Document Type: Article
Times cited : (19)

References (27)
  • 1
    • 3042831924 scopus 로고    scopus 로고
    • A large-area, flexible pressure sensor matrix with organic field-effect transistors for artificial skin applications
    • T. Someya, T. Sekitani, S. Iba, Y. Kato, H. Kawaguchi, and T. Sakurai A large-area, flexible pressure sensor matrix with organic field-effect transistors for artificial skin applications PNAS 101 2004 9966 9970
    • (2004) PNAS , vol.101 , pp. 9966-9970
    • Someya, T.1    Sekitani, T.2    Iba, S.3    Kato, Y.4    Kawaguchi, H.5    Sakurai, T.6
  • 2
    • 34247846234 scopus 로고    scopus 로고
    • Highly ordered nanowire arrays on plastic substrates for ultrasensitive flexible chemical sensors
    • M.C. McAlpine, H. Ahmad, D. Wang, and J.R. Heath Highly ordered nanowire arrays on plastic substrates for ultrasensitive flexible chemical sensors Nat. Mater. 6 2007 379 384
    • (2007) Nat. Mater. , vol.6 , pp. 379-384
    • McAlpine, M.C.1    Ahmad, H.2    Wang, D.3    Heath, J.R.4
  • 6
    • 84866411818 scopus 로고    scopus 로고
    • A flexible and highly sensitive strain-gauge sensor using reversible interlocking of nanofibres
    • C. Pang, G. Lee, T. Kim, S.M. Kim, H.N. Kim, S. Ahn, and K. Suh A flexible and highly sensitive strain-gauge sensor using reversible interlocking of nanofibres Nat. Mater. 11 2012 795 801
    • (2012) Nat. Mater. , vol.11 , pp. 795-801
    • Pang, C.1    Lee, G.2    Kim, T.3    Kim, S.M.4    Kim, H.N.5    Ahn, S.6    Suh, K.7
  • 7
    • 70349776271 scopus 로고    scopus 로고
    • Ultrathin silicon circuits with strain-isolation layers and mesh layouts for high-performance electronics on fabric, vinyl, leather, and paper
    • D. Kim, Y. Kim, J. Wu, Z. Liu, J. Song, H. Kim, Y.Y. Huang, K. Hwang, and J.A. Rogers Ultrathin silicon circuits with strain-isolation layers and mesh layouts for high-performance electronics on fabric, vinyl, leather, and paper Adv. Mater. 21 2009 3703 3707
    • (2009) Adv. Mater. , vol.21 , pp. 3703-3707
    • Kim, D.1    Kim, Y.2    Wu, J.3    Liu, Z.4    Song, J.5    Kim, H.6    Huang, Y.Y.7    Hwang, K.8    Rogers, J.A.9
  • 9
    • 76749084845 scopus 로고    scopus 로고
    • Piezoelectric ribbons printed onto rubber for flexible energy conversion
    • Y. Qi, N.T. Jafferis, K. Lyons, C.M. Lee, H. Ahmad, and M.C. McAlpine Piezoelectric ribbons printed onto rubber for flexible energy conversion Nano Lett. 10 2010 524 528
    • (2010) Nano Lett. , vol.10 , pp. 524-528
    • Qi, Y.1    Jafferis, N.T.2    Lyons, K.3    Lee, C.M.4    Ahmad, H.5    McAlpine, M.C.6
  • 10
    • 17044365390 scopus 로고    scopus 로고
    • Energy scavenging for mobile and wireless electronics
    • J.A. Paradiso, and T. Starner Energy scavenging for mobile and wireless electronics IEEE Pervasive Comput. 4 2005 18 27
    • (2005) IEEE Pervasive Comput. , vol.4 , pp. 18-27
    • Paradiso, J.A.1    Starner, T.2
  • 11
    • 0035330620 scopus 로고    scopus 로고
    • Energy scavenging with shoe-mounted piezoelectrics
    • N.S. Shenck, and J.A. Paradiso Energy scavenging with shoe-mounted piezoelectrics IEEE Micro 21 2001 30 42
    • (2001) IEEE Micro , vol.21 , pp. 30-42
    • Shenck, N.S.1    Paradiso, J.A.2
  • 12
    • 51649122440 scopus 로고    scopus 로고
    • Energy harvesting from human and machine motion for wireless electronic devices
    • P. Mitcheson, E. Yeatman, G. Rao, A. Holmes, and T. Green Energy harvesting from human and machine motion for wireless electronic devices Proc. IEEE 96 2008 1457 1486
    • (2008) Proc. IEEE , vol.96 , pp. 1457-1486
    • Mitcheson, P.1    Yeatman, E.2    Rao, G.3    Holmes, A.4    Green, T.5
  • 14
    • 33846077160 scopus 로고    scopus 로고
    • Energy harvesting vibration sources for microsystems applications
    • S.P. Beeby, M.J. Tudor, and N.M. White Energy harvesting vibration sources for microsystems applications Meas. Sci. Technol. 17 2006 R175 R195
    • (2006) Meas. Sci. Technol. , vol.17
    • Beeby, S.P.1    Tudor, M.J.2    White, N.M.3
  • 15
    • 0030408129 scopus 로고    scopus 로고
    • Human-powered wearable computing
    • T. Starner Human-powered wearable computing IBM Syst. J. 35 1996 618 629
    • (1996) IBM Syst. J. , vol.35 , pp. 618-629
    • Starner, T.1
  • 16
    • 34247102323 scopus 로고    scopus 로고
    • Thermoelectric converters of human warmth for self-powered wireless sensor nodes
    • V. Leonov, T. Torfs, P. Fiorini, and C. Van Hoof Thermoelectric converters of human warmth for self-powered wireless sensor nodes IEEE Sens. J. 7 2007 650 657
    • (2007) IEEE Sens. J. , vol.7 , pp. 650-657
    • Leonov, V.1    Torfs, T.2    Fiorini, P.3    Van Hoof, C.4
  • 17
    • 71649083187 scopus 로고    scopus 로고
    • Realization of a wearable miniaturized thermoelectric generator for human body applications
    • Z. Wang, V. Leonov, P. Fiorini, and C. Van Hoof Realization of a wearable miniaturized thermoelectric generator for human body applications Sens. Actuators, A 156 2009 95 102
    • (2009) Sens. Actuators, A , vol.156 , pp. 95-102
    • Wang, Z.1    Leonov, V.2    Fiorini, P.3    Van Hoof, C.4
  • 18
    • 76849099714 scopus 로고    scopus 로고
    • Thermoelectric microconverter for energy harvesting systems
    • J. Carmo, L. Gonçalves, and J. Correia Thermoelectric microconverter for energy harvesting systems IEEE Trans. Ind. Electron. 57 2010 861 867
    • (2010) IEEE Trans. Ind. Electron. , vol.57 , pp. 861-867
    • Carmo, J.1    Gonçalves, L.2    Correia, J.3
  • 19
    • 34848821681 scopus 로고    scopus 로고
    • Advances in energy harvesting using low profile piezoelectric transducers
    • S. Priya Advances in energy harvesting using low profile piezoelectric transducers J. Electroceram. 19 2007 167 184
    • (2007) J. Electroceram. , vol.19 , pp. 167-184
    • Priya, S.1
  • 20
    • 34249296681 scopus 로고    scopus 로고
    • A review of power harvesting using piezoelectric materials (2003-2006)
    • S. Anton, and H. Sodano A review of power harvesting using piezoelectric materials (2003-2006) Smart Mater. Struct. 16 2007 R1 R21
    • (2007) Smart Mater. Struct. , vol.16
    • Anton, S.1    Sodano, H.2
  • 21
    • 56449115420 scopus 로고    scopus 로고
    • Powering MEMS portable devices - A review of non-regenerative and regenerative power supply systems with special emphasis on piezoelectric energy harvesting systems
    • K. Cook-Chennault, N. Thambi, and A. Sastry Powering MEMS portable devices - a review of non-regenerative and regenerative power supply systems with special emphasis on piezoelectric energy harvesting systems Smart Mater. Struct. 17 2008 043001
    • (2008) Smart Mater. Struct. , vol.17 , pp. 043001
    • Cook-Chennault, K.1    Thambi, N.2    Sastry, A.3
  • 22
    • 18844453678 scopus 로고    scopus 로고
    • On low-frequency electric power generation with PZT ceramics
    • S. Platt, S. Farritor, and H. Haider On low-frequency electric power generation with PZT ceramics IEEE/ASME Trans. Mechatron. 10 2005 240 252
    • (2005) IEEE/ASME Trans. Mechatron. , vol.10 , pp. 240-252
    • Platt, S.1    Farritor, S.2    Haider, H.3
  • 23
    • 84862960497 scopus 로고    scopus 로고
    • Piezoelectric polydimethylsiloxane films for MEMS transducers
    • J. Wang, T. Hsu, C. Yeh, J. Tsai, and Y. Su Piezoelectric polydimethylsiloxane films for MEMS transducers J. Micromech. Microeng. 22 2012 015013
    • (2012) J. Micromech. Microeng. , vol.22 , pp. 015013
    • Wang, J.1    Hsu, T.2    Yeh, C.3    Tsai, J.4    Su, Y.5
  • 25
    • 12044249634 scopus 로고
    • Application of (3-mercaptopropyl)trimethoxysilane as a molecular adhesive in the fabrication of vapor-deposited gold electrodes on glass substrates
    • C.A. Goss, D.H. Charych, and M. Majda Application of (3-mercaptopropyl) trimethoxysilane as a molecular adhesive in the fabrication of vapor-deposited gold electrodes on glass substrates Anal. Chem. 63 1991 85 88
    • (1991) Anal. Chem. , vol.63 , pp. 85-88
    • Goss, C.A.1    Charych, D.H.2    Majda, M.3
  • 26
    • 0037651101 scopus 로고    scopus 로고
    • Stretchable gold conductors on elastomeric substrates
    • S.P. Lacour, and S. Wagner Stretchable gold conductors on elastomeric substrates Appl. Phys. Lett. 82 2003 2404 2406
    • (2003) Appl. Phys. Lett. , vol.82 , pp. 2404-2406
    • Lacour, S.P.1    Wagner, S.2
  • 27
    • 76849098570 scopus 로고    scopus 로고
    • A low-power stand-alone adaptive circuit for harvesting energy from a piezoelectric micropower generator
    • A. Tabesh, and L. Fréchette A low-power stand-alone adaptive circuit for harvesting energy from a piezoelectric micropower generator IEEE Trans. Ind. Electron. 57 2010 840 849
    • (2010) IEEE Trans. Ind. Electron. , vol.57 , pp. 840-849
    • Tabesh, A.1    Fréchette, L.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.