-
1
-
-
84903202409
-
-
http://www.dwavesys.com.
-
-
-
-
2
-
-
26444479778
-
Optimization by Simulated Annealing
-
S. Kirkpatrick, C. D. Gelatt, Jr., and M. P. Vecchi, Optimization by Simulated Annealing, Science 220, 671 (1983).
-
(1983)
Science
, vol.220
, pp. 671
-
-
Kirkpatrick, S.1
Gelatt Jr., C.D.2
Vecchi, M.P.3
-
3
-
-
0001276588
-
Quantum Annealing: A New Method for Minimizing Multidimensional Functions
-
A. B. Finnila, M. A. Gomez, C. Sebenik, C. Stenson, and J. D. Doll, Quantum Annealing: A New Method for Minimizing Multidimensional Functions, Chem. Phys. Lett. 219, 343 (1994).
-
(1994)
Chem. Phys. Lett.
, vol.219
, pp. 343
-
-
Finnila, A.B.1
Gomez, M.A.2
Sebenik, C.3
Stenson, C.4
Doll, J.D.5
-
4
-
-
0000071705
-
Quantum Annealing in the Transverse Ising Model
-
T. Kadowaki and H. Nishimori, Quantum Annealing in the Transverse Ising Model, Phys. Rev. E 58, 5355 (1998).
-
(1998)
Phys. Rev. E
, vol.58
, pp. 5355
-
-
Kadowaki, T.1
Nishimori, H.2
-
5
-
-
84903204879
-
-
Ph.D. thesis, Tokyo Institute of Technology, [arXiv:quant-ph/0205020].
-
T. Kadowaki, Ph.D. thesis, Tokyo Institute of Technology, 1998 [arXiv:quant-ph/0205020].
-
(1998)
-
-
Kadowaki, T.1
-
6
-
-
0033617582
-
Quantum Annealing of a Disordered Magnet
-
J. Brooke, D. Bitko, T. F. Rosenbaum, and G. Aepli, Quantum Annealing of a Disordered Magnet, Science 284, 779 (1999).
-
(1999)
Science
, vol.284
, pp. 779
-
-
Brooke, J.1
Bitko, D.2
Rosenbaum, T.F.3
Aepli, G.4
-
7
-
-
0036751848
-
Quantum Annealing by the Path-Integral Monte Carlo Method: The Two-Dimensional Random Ising Model
-
R. Martonák, G. E. Santoro, and E. Tosatti, Quantum Annealing by the Path-Integral Monte Carlo Method: The Two-Dimensional Random Ising Model, Phys. Rev. B 66, 094203 (2002).
-
(2002)
Phys. Rev. B
, vol.66
, pp. 094203
-
-
Martonák, R.1
Santoro, G.E.2
Tosatti, E.3
-
8
-
-
0037192472
-
Theory of Quantum Annealing of an Ising Spin Glass
-
G. Santoro, E. Martonák, R. Tosatti, and R. Car, Theory of Quantum Annealing of an Ising Spin Glass, Science 295, 2427 (2002).
-
(2002)
Science
, vol.295
, pp. 2427
-
-
Santoro, G.1
Martonák, E.2
Tosatti, R.3
Car, R.4
-
9
-
-
33747619871
-
TOPICAL REVIEW: Optimization Using Quantum Mechanics: Quantum Annealing through Adiabatic Evolution
-
G. E. Santoro and E. Tosatti, TOPICAL REVIEW: Optimization Using Quantum Mechanics: Quantum Annealing through Adiabatic Evolution, J. Phys. A 39, R393 (2006).
-
(2006)
J. Phys. A
, vol.39
-
-
Santoro, G.E.1
Tosatti, E.2
-
10
-
-
34247513733
-
Quantum Annealing and Related Optimization Methods
-
edited by A. Das and B. K. Chakrabarti, Springer, Berlin
-
A. Das and B. K. Chakrabarti, Quantum Annealing and Related Optimization Methods, in Lecture Notes in Physics 679, edited by A. Das and B. K. Chakrabarti (Springer, Berlin, 2005).
-
(2005)
Lecture Notes in Physics
, vol.679
-
-
Das, A.1
Chakrabarti, B.K.2
-
11
-
-
52249083005
-
Quantum Annealing and Analog Quantum Computation
-
A. Das and B. K. Chakrabarti, Quantum Annealing and Analog Quantum Computation, Rev. Mod. Phys. 80, 1061 (2008).
-
(2008)
Rev. Mod. Phys.
, vol.80
, pp. 1061
-
-
Das, A.1
Chakrabarti, B.K.2
-
12
-
-
79955917132
-
Quantum Annealing with Manufactured Spins
-
M.W. Johnson, M. H. S. Amin, S. Gildert, T. Lanting, F. Hamze, N. Dickson, R. Harris, A. J. Berkley, J. Johansson, P. Bunyk et al., Quantum Annealing with Manufactured Spins, Nature (London) 473, 194 (2011).
-
(2011)
Nature (London)
, vol.473
, pp. 194
-
-
Johnson, M.W.1
Amin, M.H.S.2
Gildert, S.3
Lanting, T.4
Hamze, F.5
Dickson, N.6
Harris, R.7
Berkley, A.J.8
Johansson, J.9
Bunyk, P.10
-
13
-
-
84891045946
-
-
arXiv:1304.4595.
-
S. Boixo, T. F. Rønnow, S. V. Isakov, Z. Wang, D. Wecker, D. A. Lidar, J.M. Martinis, and M. Troyer, Quantum Annealing with More Than One Hundred Qubits, arXiv:1304.4595.
-
Quantum Annealing with More Than One Hundred Qubits
-
-
Boixo, S.1
Rønnow, T.F.2
Isakov, S.V.3
Wang, Z.4
Wecker, D.5
Lidar, D.A.6
Martinis, J.M.7
Troyer, M.8
-
14
-
-
84884693855
-
Experimental Signature of Programmable Quantum Annealing
-
S. Boixo, T. Albash, F. M. Spedalieri, N. Chancellor, and D. A. Lidar, Experimental Signature of Programmable Quantum Annealing, Nat. Commun. 4, 2067 (2013).
-
(2013)
Nat. Commun.
, vol.4
, pp. 2067
-
-
Boixo, S.1
Albash, T.2
Spedalieri, F.M.3
Chancellor, N.4
Lidar, D.A.5
-
15
-
-
84903168400
-
-
arXiv:1305.5837.
-
L. Wang, T. F. Rønnow, S. Boixo, S. V. Isakov, Z. Wang, D. Wecker, D. A. Lidar, J.M. Martinis, and M. Troyer, Comment on: "Classical Signature of Quantum Annealing", arXiv:1305.5837.
-
Comment on: "Classical Signature of Quantum Annealing"
-
-
Wang, L.1
Rønnow, T.F.2
Boixo, S.3
Isakov, S.V.4
Wang, Z.5
Wecker, D.6
Lidar, D.A.7
Martinis, J.M.8
Troyer, M.9
-
16
-
-
84878734196
-
Thermally Assisted Quantum Annealing of a 16-Qubit Problem
-
N. G. Dickson, M.W. Johnson, M. H. Amin, R. Harris, F. Altomare, A. J. Berkley, P. Bunyk, J. Cai, E. M. Chapple, P. Chavez et al., Thermally Assisted Quantum Annealing of a 16-Qubit Problem, Nat. Commun. 4, 1903 (2013).
-
(2013)
Nat. Commun.
, vol.4
, pp. 1903
-
-
Dickson, N.G.1
Johnson, M.W.2
Amin, M.H.3
Harris, R.4
Altomare, F.5
Berkley, A.J.6
Bunyk, P.7
Cai, J.8
Chapple, E.M.9
Chavez, P.10
-
17
-
-
58149234306
-
Mathematical Foundation of Quantum Annealing
-
S. Morita and H. Nishimori, Mathematical Foundation of Quantum Annealing, J. Math. Phys. (N.Y.) 49, 125210 (2008).
-
(2008)
J. Math. Phys. (N.Y.)
, vol.49
, pp. 125210
-
-
Morita, S.1
Nishimori, H.2
-
18
-
-
84903182398
-
-
Detailed tests of the distributions of time scales show that the speedup claimed in Ref. [8] could be explained by the fact that the analysis focused only on average time scales and not the distribution of time scales. M. Troyer (private communication).
-
Detailed tests of the distributions of time scales show that the speedup claimed in Ref. [8] could be explained by the fact that the analysis focused only on average time scales and not the distribution of time scales. M. Troyer (private communication).
-
-
-
-
19
-
-
84940526481
-
-
arXiv:1401.2910.
-
T. F. Rønnow, Z. Wang, J. Job, S. Boixo, S. V. Isakov, D. Wecker, J.M. Martinis, D. A. Lidar, and M. Troyer, Defining and Detecting Quantum Speedup, arXiv:1401.2910.
-
Defining and Detecting Quantum Speedup
-
-
Rønnow, T.F.1
Wang, Z.2
Job, J.3
Boixo, S.4
Isakov, S.V.5
Wecker, D.6
Martinis, J.M.7
Lidar, D.A.8
Troyer, M.9
-
20
-
-
0043230411
-
Spin Glasses: Experimental Facts, Theoretical Concepts and Open Questions
-
K. Binder and A. P. Young, Spin Glasses: Experimental Facts, Theoretical Concepts and Open Questions, Rev. Mod. Phys. 58, 801 (1986).
-
(1986)
Rev. Mod. Phys.
, vol.58
, pp. 801
-
-
Binder, K.1
Young, A.P.2
-
21
-
-
84937141373
-
Ising Formulations of Many NP Problems
-
A. Lucas, Ising Formulations of Many NP Problems, Front. Phys. 2, 5 (2014).
-
(2014)
Front. Phys.
, vol.2
, pp. 5
-
-
Lucas, A.1
-
22
-
-
0001051761
-
On the Computational Complexity of Ising Spin Glass Models
-
F. Barahona, On the Computational Complexity of Ising Spin Glass Models, J. Phys. A 15, 3241 (1982).
-
(1982)
J. Phys. A
, vol.15
, pp. 3241
-
-
Barahona, F.1
-
23
-
-
84903219513
-
-
It is very important to study the distributions of times and not just averages. While the worst-case scenario is that there is at least one instance that cannot be treated efficiently, our claim is that, given the energy landscape, one can expect that the distribution of time scales to probe different ground-state instances likely does not have as fat a tail as, for example, a three-dimensional system with a finite transition temperature. In other words, the number of hard instances is small. However, the vast majority of instances can be treated rather efficiently with simple optimization methods, such as simulated annealing. Finally, all classical optimizers, as well as the D-Wave machine operate at nonzero temperatures. Because the system orders only at zero temperature, the path to low-lying states will be typically easier to reach than if the system had a finite transition temperature where barriers would grow in a more pronounced fashion.
-
It is very important to study the distributions of times and not just averages. While the worst-case scenario is that there is at least one instance that cannot be treated efficiently, our claim is that, given the energy landscape, one can expect that the distribution of time scales to probe different ground-state instances likely does not have as fat a tail as, for example, a three-dimensional system with a finite transition temperature. In other words, the number of hard instances is small. However, the vast majority of instances can be treated rather efficiently with simple optimization methods, such as simulated annealing. Finally, all classical optimizers, as well as the D-Wave machine operate at nonzero temperatures. Because the system orders only at zero temperature, the path to low-lying states will be typically easier to reach than if the system had a finite transition temperature where barriers would grow in a more pronounced fashion.
-
-
-
-
24
-
-
4243876627
-
Critical Properties from Monte Carlo Coarse Graining and Renormalization
-
K. Binder, Critical Properties from Monte Carlo Coarse Graining and Renormalization, Phys. Rev. Lett. 47, 693 (1981).
-
(1981)
Phys. Rev. Lett.
, vol.47
, pp. 693
-
-
Binder, K.1
-
26
-
-
0030516672
-
Exchange Monte Carlo Method and Application to Spin Glass Simulations
-
K. Hukushima and K. Nemoto, Exchange Monte Carlo Method and Application to Spin Glass Simulations, J. Phys. Soc. Jpn. 65, 1604 (1996).
-
(1996)
J. Phys. Soc. Jpn.
, vol.65
, pp. 1604
-
-
Hukushima, K.1
Nemoto, K.2
-
27
-
-
0000081281
-
Monte Carlo Simulations of Spin Glasses at Low Temperatures
-
H. G. Katzgraber, M. Palassini, and A. P. Young, Monte Carlo Simulations of Spin Glasses at Low Temperatures, Phys. Rev. B 63, 184422 (2001).
-
(2001)
Phys. Rev. B
, vol.63
, pp. 184422
-
-
Katzgraber, H.G.1
Palassini, M.2
Young, A.P.3
-
28
-
-
33745653554
-
Universality in Three-Dimensional Ising Spin Glasses: A Monte Carlo Study
-
H. G. Katzgraber, M. Körner, and A. P. Young, Universality in Three-Dimensional Ising Spin Glasses: A Monte Carlo Study, Phys. Rev. B 73, 224432 (2006).
-
(2006)
Phys. Rev. B
, vol.73
, pp. 224432
-
-
Katzgraber, H.G.1
Körner, M.2
Young, A.P.3
-
29
-
-
84903155827
-
-
Note that we do not list error bars for the statistical estimates of the critical parameters. This is because the obtained results agree to a high precision with the exact (often integer) values quoted. We also emphasize that the exact values of the critical exponents do not affect our main results. In particular, we feel it is unlikely that Tc > 0 for spin glasses on the Chimera topology.
-
Note that we do not list error bars for the statistical estimates of the critical parameters. This is because the obtained results agree to a high precision with the exact (often integer) values quoted. We also emphasize that the exact values of the critical exponents do not affect our main results. In particular, we feel it is unlikely that Tc > 0 for spin glasses on the Chimera topology.
-
-
-
-
30
-
-
42749107578
-
Correlation Length of the Two-Dimensional Ising Spin Glass with Gaussian Interactions
-
H. G. Katzgraber, L.W. Lee, and A. P. Young, Correlation Length of the Two-Dimensional Ising Spin Glass with Gaussian Interactions, Phys. Rev. B 70, 014417 (2004).
-
(2004)
Phys. Rev. B
, vol.70
, pp. 014417
-
-
Katzgraber, H.G.1
Lee, L.W.2
Young, A.P.3
-
31
-
-
84903209576
-
-
Note that simulated annealing-by design-is unable to climb over barriers because temperature is monotonically quenched to zero. However, more efficient algorithms like exchange Monte Carlo [26] are able to "climb" over barriers.
-
Note that simulated annealing-by design-is unable to climb over barriers because temperature is monotonically quenched to zero. However, more efficient algorithms like exchange Monte Carlo [26] are able to "climb" over barriers.
-
-
-
-
32
-
-
55049087841
-
Size Dependence of the Minimum Excitation Gap in the Quantum Adiabatic Algorithm
-
A. P. Young, S. Knysh, and V. N. Smelyanskiy, Size Dependence of the Minimum Excitation Gap in the Quantum Adiabatic Algorithm, Phys. Rev. Lett. 101, 170503 (2008).
-
(2008)
Phys. Rev. Lett.
, vol.101
, pp. 170503
-
-
Young, A.P.1
Knysh, S.2
Smelyanskiy, V.N.3
-
33
-
-
72149129752
-
First-Order Quantum Phase Transition in Adiabatic Quantum Computation
-
M. H. S. Amin and V. Choi, First-Order Quantum Phase Transition in Adiabatic Quantum Computation, Phys. Rev. A 80, 062326 (2009).
-
(2009)
Phys. Rev. A
, vol.80
, pp. 062326
-
-
Amin, M.H.S.1
Choi, V.2
-
34
-
-
74549157899
-
First-Order Phase Transition in the Quantum Adiabatic Algorithm
-
A. P. Young, S. Knysh, and V. N. Smelyanskiy, First-Order Phase Transition in the Quantum Adiabatic Algorithm, Phys. Rev. Lett. 104, 020502 (2010).
-
(2010)
Phys. Rev. Lett.
, vol.104
, pp. 020502
-
-
Young, A.P.1
Knysh, S.2
Smelyanskiy, V.N.3
-
35
-
-
84855396260
-
Exponential Complexity of the Quantum Adiabatic Algorithm for Certain Satisfiability Problems
-
I. Hen and A. P. Young, Exponential Complexity of the Quantum Adiabatic Algorithm for Certain Satisfiability Problems, Phys. Rev. E 84, 061152 (2011).
-
(2011)
Phys. Rev. E
, vol.84
, pp. 061152
-
-
Hen, I.1
Young, A.P.2
-
36
-
-
84903211677
-
-
To fully determine a universality class, two critical exponents are needed (here η and ν).
-
To fully determine a universality class, two critical exponents are needed (here η and ν).
-
-
-
-
37
-
-
84903217441
-
-
Note that the disorder vs temperature phase diagrams are typically reentrant for disordered ferromagnets. Therefore, it is safe to assume that a spin-glass phase at zero temperature might exist for values of p slightly smaller than pc. For examples of reentrant phase diagrams for very different model systems, see Refs. [38] and [39].
-
Note that the disorder vs temperature phase diagrams are typically reentrant for disordered ferromagnets. Therefore, it is safe to assume that a spin-glass phase at zero temperature might exist for values of p slightly smaller than pc. For examples of reentrant phase diagrams for very different model systems, see Refs. [38] and [39].
-
-
-
-
38
-
-
69249113796
-
Error Threshold for Color Codes and Random 3-Body Ising Models
-
H. G. Katzgraber, H. Bombin, and M. A. Martin-Delgado, Error Threshold for Color Codes and Random 3-Body Ising Models, Phys. Rev. Lett. 103, 090501 (2009).
-
(2009)
Phys. Rev. Lett.
, vol.103
, pp. 090501
-
-
Katzgraber, H.G.1
Bombin, H.2
Martin-Delgado, M.A.3
-
39
-
-
80054938971
-
Simplest Model to Study Reentrance in Physical Systems
-
040101(R)
-
C. K. Thomas and H. G. Katzgraber, Simplest Model to Study Reentrance in Physical Systems, Phys. Rev. E 84, 040101(R) (2011).
-
(2011)
Phys. Rev. E
, vol.84
-
-
Thomas, C.K.1
Katzgraber, H.G.2
-
40
-
-
0000244178
-
Internal Energy, Specific Heat and Correlation Function of the Bond-Random Ising Model
-
H. Nishimori, Internal Energy, Specific Heat and Correlation Function of the Bond-Random Ising Model, Prog. Theor. Phys. 66, 1169 (1981).
-
(1981)
Prog. Theor. Phys.
, vol.66
, pp. 1169
-
-
Nishimori, H.1
-
41
-
-
84903185909
-
-
Note
-
c.
-
-
-
-
42
-
-
0000734491
-
Ordered Phase of Short-Range Ising Spin-Glasses
-
D. S. Fisher and D. A. Huse, Ordered Phase of Short-Range Ising Spin-Glasses, Phys. Rev. Lett. 56, 1601 (1986).
-
(1986)
Phys. Rev. Lett.
, vol.56
, pp. 1601
-
-
Fisher, D.S.1
Huse, D.A.2
-
43
-
-
22244444842
-
Absence of Many States in Realistic Spin Glasses
-
D. S. Fisher and D. A. Huse, Absence of Many States in Realistic Spin Glasses, J. Phys. A 20, L1005 (1987).
-
(1987)
J. Phys. A
, vol.20
-
-
Fisher, D.S.1
Huse, D.A.2
-
44
-
-
33744620852
-
Equilibrium Behavior of the Spin-Glass Ordered Phase
-
D. S. Fisher and D. A. Huse, Equilibrium Behavior of the Spin-Glass Ordered Phase, Phys. Rev. B 38, 386 (1988).
-
(1988)
Phys. Rev. B
, vol.38
, pp. 386
-
-
Fisher, D.S.1
Huse, D.A.2
-
45
-
-
0001478196
-
Scaling Theory of the Ordered Phase of Spin Glasses
-
L. Van Hemmen and I. Morgenstern, Springer, New York
-
A. J. Bray and M. A. Moore, Scaling Theory of the Ordered Phase of Spin Glasses, in Heidelberg Colloquium on Glassy Dynamics and Optimization, edited by L. Van Hemmen and I. Morgenstern (Springer, New York, 1986), p. 121.
-
(1986)
Heidelberg Colloquium on Glassy Dynamics and Optimization
, pp. 121
-
-
Bray, A.J.1
Moore, M.A.2
-
46
-
-
4244207031
-
Infinite Number of Order Parameters for Spin-Glasses
-
G. Parisi, Infinite Number of Order Parameters for Spin-Glasses, Phys. Rev. Lett. 43, 1754 (1979).
-
(1979)
Phys. Rev. Lett.
, vol.43
, pp. 1754
-
-
Parisi, G.1
-
47
-
-
36149041166
-
The Order Parameter for Spin Glasses: A Function on the Interval 0-1
-
G. Parisi, The Order Parameter for Spin Glasses: A Function on the Interval 0-1, J. Phys. A 13, 1101 (1980).
-
(1980)
J. Phys. A
, vol.13
, pp. 1101
-
-
Parisi, G.1
-
48
-
-
29444445760
-
Order Parameter for Spin-Glasses
-
G. Parisi, Order Parameter for Spin-Glasses, Phys. Rev. Lett. 50, 1946 (1983).
-
(1983)
Phys. Rev. Lett.
, vol.50
, pp. 1946
-
-
Parisi, G.1
-
50
-
-
52349101355
-
Finite-Size Corrections in the Sherrington Kirkpatrick Model
-
T. Aspelmeier, A. Billoire, E. Marinari, and M. A. Moore, Finite-Size Corrections in the Sherrington Kirkpatrick Model, J. Phys. A 41, 324008 (2008).
-
(2008)
J. Phys. A
, vol.41
, pp. 324008
-
-
Aspelmeier, T.1
Billoire, A.2
Marinari, E.3
Moore, M.A.4
-
53
-
-
19744368596
-
Absence of an Almeida-Thouless Line in Three-Dimensional Spin Glasses
-
A. P. Young and H. G. Katzgraber, Absence of an Almeida-Thouless Line in Three-Dimensional Spin Glasses, Phys. Rev. Lett. 93, 207203 (2004).
-
(2004)
Phys. Rev. Lett.
, vol.93
, pp. 207203
-
-
Young, A.P.1
Katzgraber, H.G.2
-
54
-
-
43749121146
-
Behavior of Ising Spin Glasses in a Magnetic Field
-
T. Jörg, H. G. Katzgraber, and F. Krzakala, Behavior of Ising Spin Glasses in a Magnetic Field, Phys. Rev. Lett. 100, 197202 (2008).
-
(2008)
Phys. Rev. Lett.
, vol.100
, pp. 197202
-
-
Jörg, T.1
Katzgraber, H.G.2
Krzakala, F.3
-
55
-
-
65549095092
-
Study of the de Almeida-Thouless Line Using Power-Law Diluted One-Dimensional Ising Spin Glasses
-
H. G. Katzgraber, D. Larson, and A. P. Young, Study of the de Almeida-Thouless Line Using Power-Law Diluted One-Dimensional Ising Spin Glasses, Phys. Rev. Lett. 102, 177205 (2009).
-
(2009)
Phys. Rev. Lett.
, vol.102
, pp. 177205
-
-
Katzgraber, H.G.1
Larson, D.2
Young, A.P.3
-
56
-
-
84903193266
-
-
arXiv:1307.4998.
-
M. Baity-Jesi, R. A. Baños, A. Cruz, L. A. Fernandez, J. M. Gil-Narvion, Gordillo-Guerrero, D. Iñiguez, A. Maiorano, F. Mantovani, E. Marinari et al., Dynamical Transition in the D = 3 Edwards-Anderson Spin Glass in an External Magnetic Field, arXiv:1307.4998.
-
Dynamical Transition in the D = 3 Edwards-Anderson Spin Glass in an External Magnetic Field
-
-
Baity-Jesi, M.1
Baños, R.A.2
Cruz, A.3
Fernandez, L.A.4
Gil-Narvion, J.M.5
Gordillo-Guerrero6
Iñiguez, D.7
Maiorano, A.8
Mantovani, F.9
Marinari, E.10
-
59
-
-
65549088216
-
Phase Diagrams for Dilute Spin Glasses
-
L. Viana and A. J. Bray, Phase Diagrams for Dilute Spin Glasses, J. Phys. C 18, 3037 (1985).
-
(1985)
J. Phys. C
, vol.18
, pp. 3037
-
-
Viana, L.1
Bray, A.J.2
-
61
-
-
55849152053
-
Minor-embedding in adiabatic quantum computation. I: The parameter setting problem.
-
V. Choi, Minor-embedding in adiabatic quantum computation. I: The parameter setting problem., Quantum Inf. Process. 7, 193 (2008).
-
(2008)
Quantum Inf. Process.
, vol.7
, pp. 193
-
-
Choi, V.1
-
62
-
-
79956145817
-
Minor-Embedding in Adiabatic Quantum Computation. II: Minor-Universal Graph Design
-
V. Choi, Minor-Embedding in Adiabatic Quantum Computation. II: Minor-Universal Graph Design, Quantum Inf. Process. 10, 343 (2011).
-
(2011)
Quantum Inf. Process.
, vol.10
, pp. 343
-
-
Choi, V.1
-
63
-
-
79961059979
-
Zero and Low Temperature Behavior of the Two-Dimensional ± J Ising Spin Glass
-
C. K. Thomas, D. A. Huse, and A. A. Middleton, Zero and Low Temperature Behavior of the Two-Dimensional ± J Ising Spin Glass, Phys. Rev. Lett. 107, 047203 (2011).
-
(2011)
Phys. Rev. Lett.
, vol.107
, pp. 047203
-
-
Thomas, C.K.1
Huse, D.A.2
Middleton, A.A.3
-
64
-
-
84903219601
-
-
These considerations do not take hardware noise effects on the simulated universality classes into account-a problem that should also be studied in detail.
-
These considerations do not take hardware noise effects on the simulated universality classes into account-a problem that should also be studied in detail.
-
-
-
|