-
2
-
-
0000875336
-
-
[, ()]. JTPLA2 0021-3640
-
[A.B. Zamolodchikov JETP Lett. 43, 730 (1986)]. JTPLA2 0021-3640
-
(1986)
JETP Lett.
, vol.43
, pp. 730
-
-
Zamolodchikov, A.B.1
-
3
-
-
33645912887
-
-
NUPBBO 0550-3213 10.1016/0550-3213(88)90179-4
-
J. Polchinski, Nucl. Phys. B303, 226 (1988). NUPBBO 0550-3213 10.1016/0550-3213(88)90179-4
-
(1988)
Nucl. Phys.
, vol.B303
, pp. 226
-
-
Polchinski, J.1
-
6
-
-
0001685030
-
-
NUPBBO 0550-3213 10.1016/0550-3213(78)90341-3
-
H.B. Nielsen and M. Ninomiya, Nucl. Phys. B141, 153 (1978). NUPBBO 0550-3213 10.1016/0550-3213(78)90341-3
-
(1978)
Nucl. Phys.
, vol.B141
, pp. 153
-
-
Nielsen, H.B.1
Ninomiya, M.2
-
7
-
-
0000647590
-
-
NUPBBO 0550-3213 10.1016/0550-3213(83)90081-0
-
S. Chadha and H.B. Nielsen, Nucl. Phys. B217, 125 (1983). NUPBBO 0550-3213 10.1016/0550-3213(83)90081-0
-
(1983)
Nucl. Phys.
, vol.B217
, pp. 125
-
-
Chadha, S.1
Nielsen, H.B.2
-
8
-
-
70449941577
-
-
JHEPFG 1029-8479 10.1088/1126-6708/2009/11/020
-
R. Iengo, J.G. Russo, and M. Serone, J. High Energy Phys. 11 (2009) 020. JHEPFG 1029-8479 10.1088/1126-6708/2009/11/020
-
J. High Energy Phys.
, vol.2009
, Issue.11
, pp. 020
-
-
Iengo, R.1
Russo, J.G.2
Serone, M.3
-
9
-
-
77953652163
-
-
PYLBAJ 0370-2693 10.1016/j.physletb.2010.05.029
-
G.F. Giudice, M. Raidal, and A. Strumia, Phys. Lett. B 690, 272 (2010). PYLBAJ 0370-2693 10.1016/j.physletb.2010.05.029
-
(2010)
Phys. Lett. B
, vol.690
, pp. 272
-
-
Giudice, G.F.1
Raidal, M.2
Strumia, A.3
-
10
-
-
79960824649
-
-
PRVDAQ 1550-7998 10.1103/PhysRevD.83.105027
-
M.M. Anber and J.F. Donoghue, Phys. Rev. D 83, 105027 (2011). PRVDAQ 1550-7998 10.1103/PhysRevD.83.105027
-
(2011)
Phys. Rev. D
, vol.83
, pp. 105027
-
-
Anber, M.M.1
Donoghue, J.F.2
-
11
-
-
0037037942
-
-
PRLTAO 0031-9007 10.1103/PhysRevLett.89.157003
-
O. Vafek, Z. Tesanovic, and M. Franz, Phys. Rev. Lett. 89, 157003 (2002). PRLTAO 0031-9007 10.1103/PhysRevLett.89.157003
-
(2002)
Phys. Rev. Lett.
, vol.89
, pp. 157003
-
-
Vafek, O.1
Tesanovic, Z.2
Franz, M.3
-
12
-
-
0036694719
-
-
PRBMDO 0163-1829 10.1103/PhysRevB.66.054535
-
M. Franz, Z. Tesanovic, and O. Vafek, Phys. Rev. B 66, 054535 (2002). PRBMDO 0163-1829 10.1103/PhysRevB.66.054535
-
(2002)
Phys. Rev. B
, vol.66
, pp. 054535
-
-
Franz, M.1
Tesanovic, Z.2
Vafek, O.3
-
13
-
-
0036751907
-
-
PRBMDO 0163-1829 10.1103/PhysRevB.66.094512
-
D.J. Lee and I.F. Herbut, Phys. Rev. B 66, 094512 (2002). PRBMDO 0163-1829 10.1103/PhysRevB.66.094512
-
(2002)
Phys. Rev. B
, vol.66
, pp. 094512
-
-
Lee, D.J.1
Herbut, I.F.2
-
14
-
-
62149117934
-
-
PRBMDO 1098-0121 10.1103/PhysRevB.79.085116
-
I.F. Herbut, V. Juricic, and B. Roy, Phys. Rev. B 79, 085116 (2009). PRBMDO 1098-0121 10.1103/PhysRevB.79.085116
-
(2009)
Phys. Rev. B
, vol.79
, pp. 085116
-
-
Herbut, I.F.1
Juricic, V.2
Roy, B.3
-
16
-
-
84898814505
-
-
SCIEAS 0036-8075 10.1126/science.1248253
-
T. Grover, D.N. Sheng, and A. Vishwanath, Science, 344, 280 (2014). SCIEAS 0036-8075 10.1126/science.1248253
-
(2014)
Science
, vol.344
, pp. 280
-
-
Grover, T.1
Sheng, D.N.2
Vishwanath, A.3
-
17
-
-
84867795125
-
-
PRVDAQ 1550-7998 10.1103/PhysRevD.86.085025
-
R. Sundrum, Phys. Rev. D 86, 085025 (2012). PRVDAQ 1550-7998 10.1103/PhysRevD.86.085025
-
(2012)
Phys. Rev. D
, vol.86
, pp. 085025
-
-
Sundrum, R.1
-
19
-
-
84902807166
-
-
It is worth pointing out the difference from [19] which studies the consequences of chiral scale invariance and, thus, introduces from the beginning a predefined light-cone structure.
-
It is worth pointing out the difference from [19] which studies the consequences of chiral scale invariance and, thus, introduces from the beginning a predefined light-cone structure.
-
-
-
-
20
-
-
80053952243
-
-
PRLTAO 0031-9007 10.1103/PhysRevLett.107.161601
-
D.M. Hofman and A. Strominger, Phys. Rev. Lett. 107, 161601 (2011). PRLTAO 0031-9007 10.1103/PhysRevLett.107.161601
-
(2011)
Phys. Rev. Lett.
, vol.107
, pp. 161601
-
-
Hofman, D.M.1
Strominger, A.2
-
21
-
-
84902806291
-
-
An elementary example of the latter situation is provided by a theory of several massless fields - scalars or fermions - propagating with different velocities.
-
An elementary example of the latter situation is provided by a theory of several massless fields-scalars or fermions-propagating with different velocities.
-
-
-
-
22
-
-
84902764569
-
-
The reader should not be confused by the relativistic notations: though we use the space-time indices (Equation presented), etc., that take values (Equation presented), we cannot raise or lower them due to the absence of a Lorentz metric. We will, sometime, combine the time and space coordinates into a single vector (Equation presented) with (Equation presented), (Equation presented). Summation over repeated indices is assumed unless stated otherwise.
-
The reader should not be confused by the relativistic notations: though we use the space-time indices (Equation presented), etc., that take values (Equation presented), we cannot raise or lower them due to the absence of a Lorentz metric. We will, sometime, combine the time and space coordinates into a single vector (Equation presented) with (Equation presented), (Equation presented). Summation over repeated indices is assumed unless stated otherwise.
-
-
-
-
23
-
-
51249195730
-
-
NUCIAD 0029-6341 10.1007/BF02733168
-
J. Wess, Nuovo Cimento 18, 1086 (1960). NUCIAD 0029-6341 10.1007/BF02733168
-
(1960)
Nuovo Cimento
, vol.18
, pp. 1086
-
-
Wess, J.1
-
24
-
-
84902821287
-
-
In fact, it is sufficient to make this assumption only for the level (Equation presented) containing the (improved) EMT.
-
In fact, it is sufficient to make this assumption only for the level (Equation presented) containing the (improved) EMT.
-
-
-
-
25
-
-
84902823989
-
-
This is trivially valid for a ((Equation presented))-dimensional relativistic theory where the EMT decomposes into the left- and right-moving parts, (Equation presented), and hence, its Fourier transform is localized on the light cone.
-
This is trivially valid for a ((Equation presented))-dimensional relativistic theory where the EMT decomposes into the left- and right-moving parts, (Equation presented), and hence, its Fourier transform is localized on the light cone.
-
-
-
-
26
-
-
84902834997
-
-
Note that (Equation presented) is related to the imaginary part of the retarded Green's function in the thermal state: (Equation presented).
-
Note that (Equation presented) is related to the imaginary part of the retarded Green's function in the thermal state: (Equation presented).
-
-
-
-
27
-
-
84902781971
-
-
It cannot contain derivatives of the (Equation presented) function as in the vicinity of (Equation presented) the matrix element (Equation presented) is a product of a positive distribution (Equation presented) and a bounded function (Equation presented).
-
It cannot contain derivatives of the (Equation presented) function as in the vicinity of (Equation presented) the matrix element (Equation presented) is a product of a positive distribution (Equation presented) and a bounded function (Equation presented).
-
-
-
-
28
-
-
84902788685
-
-
If one imposes invariance under spatial parity, it is possible to show that the eigenvalues (Equation presented) come in sign-symmetric pairs (Equation presented). Then, the partial EMTs (24) can be grouped into EMTs of parity-symmetric subsystems.
-
If one imposes invariance under spatial parity, it is possible to show that the eigenvalues (Equation presented) come in sign-symmetric pairs (Equation presented). Then, the partial EMTs (24) can be grouped into EMTs of parity-symmetric subsystems.
-
-
-
|