메뉴 건너뛰기




Volumn 55, Issue , 2014, Pages 295-304

A novel neural network method for wind speed forecasting using exogenous measurements from agriculture stations

Author keywords

Artificial neural networks; Exogenous information; On site measurements; Time series forecasting; Wind speed prediction

Indexed keywords

AGRICULTURE; CORRELATION METHODS; MEAN SQUARE ERROR; NEURAL NETWORKS; WIND;

EID: 84902653249     PISSN: 02632241     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.measurement.2014.05.020     Document Type: Article
Times cited : (31)

References (31)
  • 5
    • 55349093262 scopus 로고    scopus 로고
    • An evaluation of methods for very short-term load forecasting using minute-by-minute British data
    • J.W. Taylor An evaluation of methods for very short-term load forecasting using minute-by-minute British data Int. J. Forecast. 24 2008 645 658
    • (2008) Int. J. Forecast. , vol.24 , pp. 645-658
    • Taylor, J.W.1
  • 7
    • 79961126223 scopus 로고    scopus 로고
    • Current methods and advances in forecasting of wind power generation
    • A.M. Foley, P.G. Leahy, A. Marvuglia, and E.J. McKeogh Current methods and advances in forecasting of wind power generation Renew. Energy 37 2012 1 8
    • (2012) Renew. Energy , vol.37 , pp. 1-8
    • Foley, A.M.1    Leahy, P.G.2    Marvuglia, A.3    McKeogh, E.J.4
  • 8
    • 84902666122 scopus 로고    scopus 로고
    • Guide to Meteorological Instruments and Methods of Observation (7th ed.) World Meteorological Organization
    • Guide to Meteorological Instruments and Methods of Observation (7th ed.). Tech. Rep. ISBN-978-92-63-100085; World Meteorological Organization, 2008 < http://www.wmo.int/pages/index-es.html >.
    • (2008) Tech. Rep. ISBN-978-92-63-100085
  • 11
    • 0034286972 scopus 로고    scopus 로고
    • A comparison of various forecasting techniques applied to mean hourly wind speed time series
    • DOI 10.1016/S0960-1481(99)00125-1, PII S0960148199001251
    • A. Sfetsos A comparison of various forecasting techniques applied to mean hourly wind speed time series Renew. Energy 21 2000 23 35 (Pubitemid 30306417)
    • (2000) Renewable Energy , vol.21 , Issue.1 , pp. 23-35
    • Sfetsos, A.1
  • 12
    • 0033686465 scopus 로고    scopus 로고
    • Applications of articial neural networks for energy systems
    • S.A. Kalogirou Applications of articial neural networks for energy systems Appl. Energy 67 2000 17 35
    • (2000) Appl. Energy , vol.67 , pp. 17-35
    • Kalogirou, S.A.1
  • 15
    • 0037243071 scopus 로고    scopus 로고
    • Time series forecasting using a hybrid ARIMA and neural network model
    • DOI 10.1016/S0925-2312(01)00702-0, PII S0925231201007020
    • G.P. Zhang Time series forecasting using a hybrid arima and neural network model Neurocomputing 50 2003 159 175 (Pubitemid 36124139)
    • (2003) Neurocomputing , vol.50 , pp. 159-175
    • Zhang, G.P.1
  • 16
    • 55349098201 scopus 로고    scopus 로고
    • Short-term wind power forecasting using evolutionary algorithms for the automated specification of artificial intelligence models
    • R. Jursa, and K. Rohrig Short-term wind power forecasting using evolutionary algorithms for the automated specification of artificial intelligence models Int. J. Forecast. 24 2008 694 709
    • (2008) Int. J. Forecast. , vol.24 , pp. 694-709
    • Jursa, R.1    Rohrig, K.2
  • 17
    • 79751505649 scopus 로고    scopus 로고
    • Bayesian adaptive combination of short-term wind speed forecasts from neural network models
    • G. Li, J. Shi, and J. Zhou Bayesian adaptive combination of short-term wind speed forecasts from neural network models Renew. Energy 36 2011 352 359
    • (2011) Renew. Energy , vol.36 , pp. 352-359
    • Li, G.1    Shi, J.2    Zhou, J.3
  • 18
    • 78649450621 scopus 로고    scopus 로고
    • Short-term wind power forecasting in Portugal by neural networks and wavelet transform
    • J.P.S. Catalao, H.M.I. Pousinho, and V.M.F. Mendes Short-term wind power forecasting in Portugal by neural networks and wavelet transform Renew. Energy 36 2011 1245 1251
    • (2011) Renew. Energy , vol.36 , pp. 1245-1251
    • Catalao, J.P.S.1    Pousinho, H.M.I.2    Mendes, V.M.F.3
  • 19
    • 34250762015 scopus 로고    scopus 로고
    • Application of artificial neural networks for the wind speed prediction of target station using reference stations data
    • DOI 10.1016/j.renene.2006.12.001, PII S0960148106003429
    • M. Bilgili, B. Sahin, and A. Yasar Application of artificial neural networks for wind speed prediction of target station using reference stations data Renew. Energy 32 2007 2350 2360 (Pubitemid 46962976)
    • (2007) Renewable Energy , vol.32 , Issue.14 , pp. 2350-2360
    • Bilgili, M.1    Sahin, B.2    Yasar, A.3
  • 20
    • 84855577454 scopus 로고    scopus 로고
    • Evaluating the wind speed persistence for several wind stations in peninsular Malaysia
    • N. Masseran, A. Razali, K. Ibrahim, and W.W. Zin Evaluating the wind speed persistence for several wind stations in peninsular Malaysia Energy 37 2012 649 656
    • (2012) Energy , vol.37 , pp. 649-656
    • Masseran, N.1    Razali, A.2    Ibrahim, K.3    Zin, W.W.4
  • 21
    • 33645031359 scopus 로고    scopus 로고
    • Standardizing the performance evaluation of short-term wind prediction models
    • H. Madsen, P. Pinson, G. Kariniotakis, H.A. Nielsen, and T.S. Nielsen Standardizing the performance evaluation of short-term wind prediction models Wind Eng. 29 2005 475 489
    • (2005) Wind Eng. , vol.29 , pp. 475-489
    • Madsen, H.1    Pinson, P.2    Kariniotakis, G.3    Nielsen, H.A.4    Nielsen, T.S.5
  • 22
    • 51849142610 scopus 로고    scopus 로고
    • Short term wind speed forecasting in la Venta, Oaxaca, México, using artificial neural networks
    • E. Cadenas, and W. Rivera Short term wind speed forecasting in la Venta, Oaxaca, México, using artificial neural networks Renew. Energy 34 2009 274 278
    • (2009) Renew. Energy , vol.34 , pp. 274-278
    • Cadenas, E.1    Rivera, W.2
  • 23
    • 78650561071 scopus 로고    scopus 로고
    • Error analysis of short term wind power prediction models
    • M.G.D. Giorgi, A. Ficarella, and M. Tarantino Error analysis of short term wind power prediction models Appl. Energy 88 2011 1298 1311
    • (2011) Appl. Energy , vol.88 , pp. 1298-1311
    • Giorgi, M.G.D.1    Ficarella, A.2    Tarantino, M.3
  • 24
    • 84859416828 scopus 로고    scopus 로고
    • Evaluation of hybrid forecasting approaches for wind speed and power generation time series
    • J. Shi, J. Guo, and S. Zheng Evaluation of hybrid forecasting approaches for wind speed and power generation time series Renew. Sustain. Energy Rev. 16 2012 3471 3480
    • (2012) Renew. Sustain. Energy Rev. , vol.16 , pp. 3471-3480
    • Shi, J.1    Guo, J.2    Zheng, S.3
  • 26
    • 0003123930 scopus 로고    scopus 로고
    • Forecasting with artificial neural networks: The state of the art
    • PII S0169207097000447
    • G. Zhang, B.E. Patuwo, and M.Y. Hu Forecasting with artificial neural networks: the state of the art Int. J. Forecast. 14 1998 35 62 (Pubitemid 128340470)
    • (1998) International Journal of Forecasting , vol.14 , Issue.1 , pp. 35-62
    • Zhang, G.1    Patuwo, B.E.2    Hu, M.Y.3
  • 27
    • 58149468814 scopus 로고    scopus 로고
    • Improvement of auto-regressive integrated moving average models using fuzzy logic and artificial neural networks (ANNs)
    • M. Khashei, M. Bijari, and G.A. Raissi-Ardali Improvement of auto-regressive integrated moving average models using fuzzy logic and artificial neural networks (ANNs) Neurocomputing 72 2009 956 967
    • (2009) Neurocomputing , vol.72 , pp. 956-967
    • Khashei, M.1    Bijari, M.2    Raissi-Ardali, G.A.3
  • 29
    • 78650932086 scopus 로고    scopus 로고
    • Combining exponential smoothing forecasts using akaike weights
    • S. Kolassa Combining exponential smoothing forecasts using akaike weights Int. J. Forecast. 27 2011 238 251
    • (2011) Int. J. Forecast. , vol.27 , pp. 238-251
    • Kolassa, S.1
  • 31
    • 54549122408 scopus 로고    scopus 로고
    • Compatible simultaneous lower confidence bounds for the holm procedure and other Bonferroni-based closed tests
    • K. Strassburger, and F. Bretz Compatible simultaneous lower confidence bounds for the holm procedure and other Bonferroni-based closed tests Statist. Med. 27 2008 4914 4927
    • (2008) Statist. Med. , vol.27 , pp. 4914-4927
    • Strassburger, K.1    Bretz, F.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.