메뉴 건너뛰기




Volumn 30, Issue 12, 2014, Pages

Cross-study validation for the assessment of prediction algorithms

Author keywords

[No Author keywords available]

Indexed keywords

ALGORITHM; ARTICLE; ARTIFICIAL INTELLIGENCE; BREAST TUMOR; DISEASE FREE SURVIVAL; DNA MICROARRAY; EVALUATION STUDY; FEMALE; GENE EXPRESSION PROFILING; HUMAN; METASTASIS; PATHOLOGY; PROGNOSIS; REPRODUCIBILITY;

EID: 84902519819     PISSN: 13674803     EISSN: 14602059     Source Type: Journal    
DOI: 10.1093/bioinformatics/btu279     Document Type: Article
Times cited : (86)

References (41)
  • 1
    • 69249159556 scopus 로고    scopus 로고
    • Development of biomarker classifiers from high-dimensional data
    • Baek, S. et al. (2009) Development of biomarker classifiers from high-dimensional data. Brief. Bioinform., 10, 537-546.
    • (2009) Brief. Bioinform. , vol.10 , pp. 537-546
    • Baek, S.1
  • 2
    • 41949101394 scopus 로고    scopus 로고
    • Run batch effects potentially compromise the usefulness of genomic signatures for ovarian cancer
    • Baggerly, K.A. et al. (2008) Run batch effects potentially compromise the usefulness of genomic signatures for ovarian cancer. J. Clin. Oncol., 26, 1186-1187.
    • (2008) J. Clin. Oncol. , vol.26 , pp. 1186-1187
    • Baggerly, K.A.1
  • 3
    • 19944372078 scopus 로고    scopus 로고
    • Generating survival times to simulate Cox proportional hazards models
    • Bender, R. et al. (2005) Generating survival times to simulate Cox proportional hazards models. Stat. Med., 24, 1713-1723.
    • (2005) Stat. Med. , vol.24 , pp. 1713-1723
    • Bender, R.1
  • 4
    • 39449093646 scopus 로고    scopus 로고
    • Allowing for mandatory covariates in boosting estimation of sparse high-dimensional survival models
    • Binder, H. and Schumacher, M. (2008) Allowing for mandatory covariates in boosting estimation of sparse high-dimensional survival models. BMC Bioinform., 9, 14.
    • (2008) BMC Bioinform. , vol.9 , pp. 14
    • Binder, H.1    Schumacher, M.2
  • 5
    • 19344375744 scopus 로고    scopus 로고
    • Semi-supervised methods to predict patient survival from gene expression data
    • Blair, E. and Tibshirani, R. (2004) Semi-supervised methods to predict patient survival from gene expression data. PLoS Biol., 2, 511-522.
    • (2004) PLoS Biol. , vol.2 , pp. 511-522
    • Blair, E.1    Tibshirani, R.2
  • 6
    • 84885639290 scopus 로고    scopus 로고
    • On representative and illustrative comparisons with real data in bioinformatics: Response to the letter to the editor by smith et al
    • Boulesteix, A.L. (2013) On representative and illustrative comparisons with real data in bioinformatics: response to the letter to the editor by smith et al. Bioinformatics, 29, 2664-2666.
    • (2013) Bioinformatics , vol.29 , pp. 2664-2666
    • Boulesteix, A.L.1
  • 7
    • 34548565944 scopus 로고    scopus 로고
    • Predicting survival from microarray data- A comparative study
    • Bøvelstad, H.M. et al. (2007) Predicting survival from microarray data- A comparative study. Bioinformatics, 23, 2080-2087.
    • (2007) Bioinformatics , vol.23 , pp. 2080-2087
    • Bøvelstad, H.M.1
  • 8
    • 79955760409 scopus 로고    scopus 로고
    • An empirical assessment of validation practices for molecular classifiers
    • Castaldi, P.J. et al. (2011) An empirical assessment of validation practices for molecular classifiers. Brief. Bioinform., 12, 189-202.
    • (2011) Brief. Bioinform. , vol.12 , pp. 189-202
    • Castaldi, P.J.1
  • 9
    • 33845191779 scopus 로고    scopus 로고
    • Genomic and transcriptional aberrations linked to breast cancer pathophysiologies
    • Chin, K. et al. (2006) Genomic and transcriptional aberrations linked to breast cancer pathophysiologies. Cancer Cell, 10, 529-541.
    • (2006) Cancer Cell , vol.10 , pp. 529-541
    • Chin, K.1
  • 10
    • 29644438050 scopus 로고    scopus 로고
    • Statistical comparisons of classifiers over multiple data sets
    • Demsar, J. (2006) Statistical comparisons of classifiers over multiple data sets. J. Mach. Learn. Res., 7, 1-30.
    • (2006) J. Mach. Learn. Res. , vol.7 , pp. 1-30
    • Demsar, J.1
  • 11
    • 34250652449 scopus 로고    scopus 로고
    • Strong time dependence of the 76-gene prognostic signature for node-negative breast cancer patients in the transbig multicenter independent validation series
    • Desmedt, C. et al. (2007) Strong time dependence of the 76-gene prognostic signature for node-negative breast cancer patients in the transbig multicenter independent validation series. Clin. Cancer Res., 13, 3207-3214.
    • (2007) Clin. Cancer Res. , vol.13 , pp. 3207-3214
    • Desmedt, C.1
  • 13
    • 33645825388 scopus 로고    scopus 로고
    • Multicenter validation of a gene ExpressionBased prognostic signature in lymph NodeNegative primary breast cancer
    • Foekens, J.A. et al. (2006) Multicenter validation of a gene ExpressionBased prognostic signature in lymph NodeNegative primary breast cancer. J. Clin. Oncol., 24, 1665-1671.
    • (2006) J. Clin. Oncol. , vol.24 , pp. 1665-1671
    • Foekens, J.A.1
  • 14
    • 84879407005 scopus 로고    scopus 로고
    • CuratedOvarianData: Clinically annotated data for the ovarian cancer transcriptome
    • [Epup ahead of print doi: 10.1093/database/bat013 April 2, 2013]
    • Ganzfried, B.F. et al. (2013) curatedOvarianData: clinically annotated data for the ovarian cancer transcriptome. Database, [Epup ahead of print, doi: 10.1093/database/bat013, April 2, 2013].
    • (2013) Database
    • Ganzfried, B.F.1
  • 15
    • 28744458859 scopus 로고    scopus 로고
    • Bioconductor: Open software development for computational biology and bioinformatics
    • Gentleman, R.C. et al. (2004) Bioconductor: open software development for computational biology and bioinformatics. Genome Biol., 5, R80.
    • (2004) Genome Biol. , vol.5
    • Gentleman, R.C.1
  • 16
    • 77952568988 scopus 로고    scopus 로고
    • 1 penalized estimation in the cox proportional hazards model
    • 1 penalized estimation in the cox proportional hazards model. Biometr. J., 52, 70-84.
    • (2010) Biometr. J. , vol.52 , pp. 70-84
    • Goeman, J.1
  • 17
    • 27944450863 scopus 로고    scopus 로고
    • Concordance probability and discriminatory power in proportional hazards regression
    • Gnen, M. and Heller, G. (2005) Concordance probability and discriminatory power in proportional hazards regression. Biometrika, 92, 965-970.
    • (2005) Biometrika , vol.92 , pp. 965-970
    • Gnen, M.1    Heller, G.2
  • 18
    • 84857540547 scopus 로고    scopus 로고
    • A three-gene model to robustly identify breast cancer molecular subtypes
    • Haibe-Kains, B. et al. (2012) A three-gene model to robustly identify breast cancer molecular subtypes. J. Natl Cancer Inst., 104, 311-325.
    • (2012) J. Natl Cancer Inst. , vol.104 , pp. 311-325
    • Haibe-Kains, B.1
  • 19
    • 0030069896 scopus 로고    scopus 로고
    • Multivariate prognostic models: Issues in developing models, evaluating assumptions and adequacy, and measuring and reducing errors
    • Harrell, F.E. et al. (1996) Multivariate prognostic models: issues in developing models, evaluating assumptions and adequacy, and measuring and reducing errors. Stati. Med., 15, 361-387.
    • (1996) Stati. Med. , vol.15 , pp. 361-387
    • Harrell, F.E.1
  • 20
    • 0016808682 scopus 로고
    • A 'Super-Population viewpoint' for finite population sampling
    • Hartley, H.O. and Sielken, R.L. Jr (1975) A 'Super-Population viewpoint' for finite population sampling. Biometrics, 31, 411-422.
    • (1975) Biometrics , vol.31 , pp. 411-422
    • Hartley, H.O.1    Sielken, Jr.R.L.2
  • 21
    • 77956873627 scopus 로고    scopus 로고
    • Tackling the widespread and critical impact of batch effects in high-throughput data
    • Leek, J.T. et al. (2010) Tackling the widespread and critical impact of batch effects in high-throughput data. Nat. Rev. Genet., 11, 733-739.
    • (2010) Nat. Rev. Genet. , vol.11 , pp. 733-739
    • Leek, J.T.1
  • 23
    • 79961116748 scopus 로고    scopus 로고
    • Strategies for aggregating gene expression data: The collap-serows R function
    • Miller, J.A. et al. (2011) Strategies for aggregating gene expression data: the collap-serows R function. BMC Bioinform., 12, 322.
    • (2011) BMC Bioinform. , vol.12 , pp. 322
    • Miller, J.A.1
  • 24
    • 23144461051 scopus 로고    scopus 로고
    • Genes that mediate breast cancer metastasis to lung
    • Minn, A.J. et al. (2005) Genes that mediate breast cancer metastasis to lung. Nature, 436, 518-524.
    • (2005) Nature , vol.436 , pp. 518-524
    • Minn, A.J.1
  • 25
    • 34147211281 scopus 로고    scopus 로고
    • Lung metastasis genes couple breast tumor size and meta-static spread
    • Minn, A.J. et al. (2007) Lung metastasis genes couple breast tumor size and meta-static spread. Proc. Natl Acad. Sci. USA, 104, 6740-6745.
    • (2007) Proc. Natl Acad. Sci. USA , vol.104 , pp. 6740-6745
    • Minn, A.J.1
  • 26
    • 0029616533 scopus 로고
    • Meta-analysis of randomized controlled trials: A concern for standards
    • Moher, D. and Olkin, I. (1995) Meta-analysis of randomized controlled trials: A concern for standards. JAMA, 274, 1962-1964.
    • (1995) JAMA , vol.274 , pp. 1962-1964
    • Moher, D.1    Olkin, I.2
  • 27
    • 25144494760 scopus 로고    scopus 로고
    • Prediction error estimation: A comparison of resampling methods
    • Molinaro, A.M. et al. (2005) Prediction error estimation: a comparison of resampling methods. Bioinformatics, 21, 3301-3307.
    • (2005) Bioinformatics , vol.21 , pp. 3301-3307
    • Molinaro, A.M.1
  • 28
    • 84902460514 scopus 로고    scopus 로고
    • Risk prediction for Late-Stage ovarian cancer by meta-ana-lysis of 1525 patient samples
    • Epup ahead of print, doi:10.1093/jnci/dju048, April 3, 2014
    • Riester, M. et al. (2014) Risk prediction for Late-Stage ovarian cancer by meta-ana-lysis of 1525 patient samples. JNCI J Natl Cancer Inst., [Epup ahead of print, doi:10.1093/jnci/dju048, April 3, 2014].
    • (2014) JNCI J Natl Cancer Inst
    • Riester, M.1
  • 29
    • 0029851283 scopus 로고    scopus 로고
    • A note on quantifying follow-up in studies of failure time
    • Schemper, M. and Smith, T.L. (1996) A note on quantifying follow-up in studies of failure time. Clinical Trials, 17, 343-346.
    • (1996) Clinical Trials , vol.17 , pp. 343-346
    • Schemper, M.1    Smith, T.L.2
  • 30
    • 44849101184 scopus 로고    scopus 로고
    • The humoral immune system has a key prognostic impact in node-negative breast cancer
    • Schmidt, M. et al. (2008) The humoral immune system has a key prognostic impact in node-negative breast cancer. Cancer Res., 68, 5405-5413.
    • (2008) Cancer Res. , vol.68 , pp. 5405-5413
    • Schmidt, M.1
  • 31
    • 70449420123 scopus 로고    scopus 로고
    • Use of archived specimens in evaluation of prognostic and predictive biomarkers
    • Simon, R.M. et al. (2009) Use of archived specimens in evaluation of prognostic and predictive biomarkers. J. Natl Cancer Inst., 101, 1446-1452.
    • (2009) J. Natl Cancer Inst. , vol.101 , pp. 1446-1452
    • Simon, R.M.1
  • 32
    • 79955762500 scopus 로고    scopus 로고
    • Using cross-validation to evaluate predictive accuracy of survival risk classifiers based on high-dimensional data
    • Simon, R.M. et al. (2011) Using cross-validation to evaluate predictive accuracy of survival risk classifiers based on high-dimensional data. Brief. Bioinform., 12, 203-217.
    • (2011) Brief. Bioinform. , vol.12 , pp. 203-217
    • Simon, R.M.1
  • 33
    • 33144462268 scopus 로고    scopus 로고
    • Gene expression profiling in breast cancer: Understanding the molecular basis of histologic grade to improve prognosis
    • Sotiriou, C. et al. (2006) Gene expression profiling in breast cancer: understanding the molecular basis of histologic grade to improve prognosis. J. Natl Cancer Inst., 98, 262-272.
    • (2006) J. Natl Cancer Inst. , vol.98 , pp. 262-272
    • Sotiriou, C.1
  • 34
    • 77950571895 scopus 로고    scopus 로고
    • Gene expression-based prognostic signatures in lung cancer: Ready for clinical use?
    • Subramanian, J. and Simon, R. (2010) Gene expression-based prognostic signatures in lung cancer: ready for clinical use? J. Natl Cancer Inst., 102, 464-474.
    • (2010) J. Natl Cancer Inst. , vol.102 , pp. 464-474
    • Subramanian, J.1    Simon, R.2
  • 35
    • 77957935139 scopus 로고    scopus 로고
    • Genomic index of sensitivity to endocrine therapy for breast cancer
    • Symmans, W.F. et al. (2010) Genomic index of sensitivity to endocrine therapy for breast cancer. J. Clin. Oncol., 28, 4111-4119.
    • (2010) J. Clin. Oncol. , vol.28 , pp. 4111-4119
    • Symmans, W.F.1
  • 36
    • 80755169527 scopus 로고    scopus 로고
    • InSilicoDb: An R/Bioconductor package for accessing human affymetrix expert-curated datasets from GEO
    • Taminau, J. et al. (2011) inSilicoDb: an R/Bioconductor package for accessing human affymetrix expert-curated datasets from GEO. Bioinformatics, 27, 3204-3205.
    • (2011) Bioinformatics , vol.27 , pp. 3204-3205
    • Taminau, J.1
  • 38
    • 33644860703 scopus 로고    scopus 로고
    • Bias in error estimation when using cross-validation for model selection
    • Varma, S. and Simon, R. (2006) Bias in error estimation when using cross-validation for model selection. BMC Bioinformatics, 7, 91.
    • (2006) BMC Bioinformatics , vol.7 , pp. 91
    • Varma, S.1    Simon, R.2
  • 39
    • 83355174923 scopus 로고    scopus 로고
    • Optimized application of penalized regression methods to diverse genomic data
    • Waldron, L. et al. (2011) Optimized application of penalized regression methods to diverse genomic data. Bioinformatics, 27, 3399-3406.
    • (2011) Bioinformatics , vol.27 , pp. 3399-3406
    • Waldron, L.1
  • 40
    • 84902460506 scopus 로고    scopus 로고
    • Comparative meta-analysis of prognostic gene signatures for Late-Stage ovarian cancer
    • Epub ahead of print, doi:10.1093/jnci/dju049, April 3, 2014
    • Waldron, L. et al. (2014) Comparative meta-analysis of prognostic gene signatures for Late-Stage ovarian cancer. JNCI J Natl Cancer Inst., [Epub ahead of print, doi:10.1093/jnci/dju049, April 3, 2014].
    • (2014) JNCI J Natl Cancer Inst
    • Waldron, L.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.