-
1
-
-
0023326910
-
How to identify bathtub hazard rate
-
Aarset, M.V. (1987). How to identify bathtub hazard rate. IEEE Trans. Reliab. 36: 106-108.
-
(1987)
IEEE Trans. Reliab.
, vol.36
, pp. 106-108
-
-
Aarset, M.V.1
-
3
-
-
0029288952
-
A general purpose approximate goodness-of-fit test
-
Chen, G., Balakrishnan, N. (1995). A general purpose approximate goodness-of-fit test. J. Qual. Technol. 27: 154-161.
-
(1995)
J. Qual. Technol.
, vol.27
, pp. 154-161
-
-
Chen, G.1
Balakrishnan, N.2
-
4
-
-
4143071494
-
Performance analysis of digital modulations on Weibull fading channels
-
Cheng, J., Tellambura, C., Beaulieu, N.C. (2003). Performance analysis of digital modulations on Weibull fading channels. IEEE Vehic. Technol. Conf. 1: 236-240.
-
(2003)
IEEE Vehic. Technol. Conf.
, vol.1
, pp. 236-240
-
-
Cheng, J.1
Tellambura, C.2
Beaulieu, N.C.3
-
5
-
-
0035517051
-
Goodness-of-fit for the generalized Pareto distribution
-
Choulakian, V., Stephens, M.A. (2001). Goodness-of-fit for the generalized Pareto distribution. Technometrics 43: 478-484.
-
(2001)
Technometrics
, vol.43
, pp. 478-484
-
-
Choulakian, V.1
Stephens, M.A.2
-
7
-
-
48249109322
-
The beta-Weibull distribution
-
Famoye, F., Lee, C., Olumolade, O. (2005). The beta-Weibull distribution. J. Statist. Theor. Applic. 4: 121-136.
-
(2005)
J. Statist. Theor. Applic.
, vol.4
, pp. 121-136
-
-
Famoye, F.1
Lee, C.2
Olumolade, O.3
-
9
-
-
0002327241
-
Bathtub shaped failure rate distributions
-
Balakrishnan, N. Rao, C.R. Eds
-
Lai, C.D., Xie, M., Murthy, D. N.P. (2001). Bathtub shaped failure rate distributions. In: Balakrishnan, N., Rao, C.R., Eds., Handbook in Reliability. vol. 20, pp. 69-104.
-
(2001)
Handbook in Reliability
, vol.20
, pp. 69-104
-
-
Lai, C.D.1
Xie, M.2
Murthy, D.N.P.3
-
10
-
-
79959302786
-
The beta generalized Pareto distribution with application to lifetime data
-
Mahmoudi, E. (2011). The beta generalized Pareto distribution with application to lifetime data. Math. Comput. Simul. 81: 2414-2430.
-
(2011)
Math. Comput. Simul.
, vol.81
, pp. 2414-2430
-
-
Mahmoudi, E.1
-
11
-
-
0027608675
-
Exponentiated Weibull family for analyzing bathtub failure-rate data
-
Mudholkar, G.S., Srivastava, D.K. (1993). Exponentiated Weibull family for analyzing bathtub failure-rate data. IEEE Trans. Reliab. 42: 299-302.
-
(1993)
IEEE Trans. Reliab.
, vol.42
, pp. 299-302
-
-
Mudholkar, G.S.1
Srivastava, D.K.2
-
13
-
-
70349236169
-
Bathtub-shaped failure rate functions
-
Nadarajah, S. (2009). Bathtub-shaped failure rate functions. Qual. Quant. 43: 855-863.
-
(2009)
Qual. Quant.
, vol.43
, pp. 855-863
-
-
Nadarajah, S.1
-
14
-
-
29344443512
-
On some recent modifications of Weibull distribution
-
Nadarajah, S., Kotz, S. (2005). On some recent modifications of Weibull distribution. IEEE Trans. Reliab. 54: 561-562.
-
(2005)
IEEE Trans. Reliab.
, vol.54
, pp. 561-562
-
-
Nadarajah, S.1
Kotz, S.2
-
15
-
-
34548619891
-
On recent generalizations of the Weibull distribution
-
Pham, H., Lai, C.D. (2007). On recent generalizations of the Weibull distribution. IEEE Trans. Reliab. 56: 454-458.
-
(2007)
IEEE Trans. Reliab.
, vol.56
, pp. 454-458
-
-
Pham, H.1
Lai, C.D.2
-
17
-
-
84863304598
-
-
R Development Core Team. Vienna: R Foundation for Statistical Computing
-
R Development Core Team (2012). R: A Language and Environment for Statistical Computing. Vienna: R Foundation for Statistical Computing.
-
(2012)
R: A Language and Environment for Statistical Computing
-
-
-
18
-
-
0030122796
-
Reliability analysis using an additive Weibull model with bathtub-shaped failure rate function
-
Xie, M., Lai, C.D. (1995). Reliability analysis using an additive Weibull model with bathtub-shaped failure rate function. Reliab. Eng. Syst. Safety 52: 87-93.
-
(1995)
Reliab. Eng. Syst. Safety
, vol.52
, pp. 87-93
-
-
Xie, M.1
Lai, C.D.2
-
20
-
-
84963044459
-
The asymptotic expansion of the generalized hypergeometric function
-
Wright, E.M. (1935). The asymptotic expansion of the generalized hypergeometric function. J. London Mathemat. Soc. 10: 286-293.
-
(1935)
J. London Mathemat. Soc.
, vol.10
, pp. 286-293
-
-
Wright, E.M.1
|