-
1
-
-
0007834494
-
Pattern classification by linear goal programming and its extensions
-
H. Nakayama, and N. Kagaku Pattern classification by linear goal programming and its extensions J. Global Optim. 12 2 1998 111 126
-
(1998)
J. Global Optim.
, vol.12
, Issue.2
, pp. 111-126
-
-
Nakayama, H.1
Kagaku, N.2
-
4
-
-
83655192093
-
Data-core-based fuzzy min-max neural network for pattern classification
-
H. Zhang, J. Liu, D. Ma, and Z. Wang Data-core-based fuzzy min-max neural network for pattern classification IEEE Trans. Neural Netw. 22 12 2011 2339 2352
-
(2011)
IEEE Trans. Neural Netw.
, vol.22
, Issue.12
, pp. 2339-2352
-
-
Zhang, H.1
Liu, J.2
Ma, D.3
Wang, Z.4
-
5
-
-
0036556003
-
Constructing and training feed-forward neural networks for pattern classification
-
X. Jiang, and A.H.K.S. Wah Constructing and training feed-forward neural networks for pattern classification Pattern Recognit. 36 4 2003 853 867
-
(2003)
Pattern Recognit.
, vol.36
, Issue.4
, pp. 853-867
-
-
Jiang, X.1
Wah, A.H.K.S.2
-
6
-
-
33749240206
-
Multi-class pattern classification using neural networks
-
G. Ou, and Y.L. Murphey Multi-class pattern classification using neural networks Pattern Recognit. 40 1 2007 4 18
-
(2007)
Pattern Recognit.
, vol.40
, Issue.1
, pp. 4-18
-
-
Ou, G.1
Murphey, Y.L.2
-
7
-
-
0029341018
-
A detailed comparison of backpropagation neural network and maximum-likelihood classifiers for urban land use classification
-
J.D. Paola, and R.A. Schowengerdt A detailed comparison of backpropagation neural network and maximum-likelihood classifiers for urban land use classification IEEE Trans. Geosci. Remote Sens. 33 4 1995 981 996
-
(1995)
IEEE Trans. Geosci. Remote Sens.
, vol.33
, Issue.4
, pp. 981-996
-
-
Paola, J.D.1
Schowengerdt, R.A.2
-
9
-
-
0033101401
-
Verification of the nonparametric characteristics of backpropagation neural networks for image classification
-
W. Zhou Verification of the nonparametric characteristics of backpropagation neural networks for image classification IEEE Trans. Geosci. Remote Sens. 37 2 1999 771 779
-
(1999)
IEEE Trans. Geosci. Remote Sens.
, vol.37
, Issue.2
, pp. 771-779
-
-
Zhou, W.1
-
11
-
-
0029375531
-
On the local minima free condition of backpropagation learning
-
X. Yu, and G. Chen On the local minima free condition of backpropagation learning IEEE Trans. Neural Netw. 6 5 1995 1300 1303
-
(1995)
IEEE Trans. Neural Netw.
, vol.6
, Issue.5
, pp. 1300-1303
-
-
Yu, X.1
Chen, G.2
-
12
-
-
84866712461
-
Weights direct determination of feedforward neural networks without iterative BP-training
-
L. Wang, T. Hong, IGI Globa Hershey
-
Y. Zhang, and N. Tan Weights direct determination of feedforward neural networks without iterative BP-training L. Wang, T. Hong, Intelligent Soft Computation and Evolving Data Mining 2010 IGI Globa Hershey 197 225
-
(2010)
Intelligent Soft Computation and Evolving Data Mining
, pp. 197-225
-
-
Zhang, Y.1
Tan, N.2
-
13
-
-
84925236971
-
Weights and structure determination of artificial neuronets
-
W.J. Zhang, Nova Science Publishers New York (Chapter 5)
-
Y. Zhang, X. Yu, L. Xiao, W. Li, and Z. Fan Weights and structure determination of artificial neuronets W.J. Zhang, Self-Organization: Theories and Methods 2013 Nova Science Publishers New York 109 153 (Chapter 5)
-
(2013)
Self-Organization: Theories and Methods
, pp. 109-153
-
-
Zhang, Y.1
Yu, X.2
Xiao, L.3
Li, W.4
Fan, Z.5
-
14
-
-
84872318483
-
Pruning-included weights and structure determination of 2-input neuronet using Chebyshev polynomials of Class 1
-
Y. Zhang, Y. Yin, X. Yu, D. Guo, L. Xiao, Pruning-included weights and structure determination of 2-input neuronet using Chebyshev polynomials of Class 1, in: Proceedings of the 10th World Congress on Intelligent Control and Automation, 2012, pp. 700-705.
-
(2012)
Proceedings of the 10th World Congress on Intelligent Control and Automation
, pp. 700-705
-
-
Zhang, Y.1
Yin, Y.2
Yu, X.3
Guo, D.4
Xiao, L.5
-
15
-
-
84947802541
-
Polynomial approximation
-
P. Armitage, T. Colton, Wiley London
-
G.K. Smyth Polynomial approximation P. Armitage, T. Colton, Encyclopedia of Biostatistics Second Edition 2004 Wiley London 4136 4140
-
(2004)
Encyclopedia of Biostatistics Second Edition
, pp. 4136-4140
-
-
Smyth, G.K.1
-
16
-
-
83555179950
-
Using Chebyshev polynomials to approximate partial differential equations
-
G. Caporale, and M. Cerrato Using Chebyshev polynomials to approximate partial differential equations Comput. Econ. 35 3 2010 235 244
-
(2010)
Comput. Econ.
, vol.35
, Issue.3
, pp. 235-244
-
-
Caporale, G.1
Cerrato, M.2
-
17
-
-
0032287679
-
The Chebyshev-polynomials-based unified model neural networks for function approximation
-
T. Lee, and J. Jeng The Chebyshev-polynomials-based unified model neural networks for function approximation IEEE Trans. Syst. Man Cybern. Part B: Cybern. 28 6 1998 925 935
-
(1998)
IEEE Trans. Syst. Man Cybern. Part B: Cybern.
, vol.28
, Issue.6
, pp. 925-935
-
-
Lee, T.1
Jeng, J.2
-
18
-
-
84902366304
-
Pattern classification using polynomial neural networks for two classes' problem
-
B. Park, K. Kim, S. Oh, H. Kim, Pattern classification using polynomial neural networks for two classes' problem, in: Proceedings of the Eighth Symposium on Advanced Intelligent Systems, 2007, pp. 476-480.
-
(2007)
Proceedings of the Eighth Symposium on Advanced Intelligent Systems
, pp. 476-480
-
-
Park, B.1
Kim, K.2
Oh, S.3
Kim, H.4
-
19
-
-
34548864964
-
Pattern classification using polynomial neural network
-
S. Satapathy, B. Biswal, P. Dash, G. Panda, Pattern classification using polynomial neural network, in: Proceedings of IEEE Conference on Cybernetics and Intelligent Systems, 2006, pp. 1-6.
-
(2006)
Proceedings of IEEE Conference on Cybernetics and Intelligent Systems
, pp. 1-6
-
-
Satapathy, S.1
Biswal, B.2
Dash, P.3
Panda, G.4
-
20
-
-
0036685272
-
Nonlinear dynamic system identification using Chebyshev functional link artificial neural networks
-
J. Patra, and A. Kot Nonlinear dynamic system identification using Chebyshev functional link artificial neural networks IEEE Trans. Syst. Man Cybern. Part B: Cybern. 32 4 2002 505 511
-
(2002)
IEEE Trans. Syst. Man Cybern. Part B: Cybern.
, vol.32
, Issue.4
, pp. 505-511
-
-
Patra, J.1
Kot, A.2
-
21
-
-
33646760968
-
Extension of Bernstein polynomials to infinite dimensional case
-
L. D'Ambrosio Extension of Bernstein polynomials to infinite dimensional case J. Approx. Theory 140 2 2006 191 202
-
(2006)
J. Approx. Theory
, vol.140
, Issue.2
, pp. 191-202
-
-
D'Ambrosio, L.1
-
22
-
-
34347255784
-
Bernstein approximations to the copula function and portfolio optimization
-
A. Sancetta, S.E. Satchell, Bernstein approximations to the copula function and portfolio optimization, in: Cambridge Working Papers in Economics 0105, Faculty of Economics, University of Cambridge, 2001.
-
(2001)
Cambridge Working Papers in Economics 0105, Faculty of Economics, University of Cambridge
-
-
Sancetta, A.1
Satchell, S.E.2
-
23
-
-
0037276988
-
Tuning of the structure and parameters of a neural network using an improved genetic algorithm
-
F. Leung, H. Lam, S. Ling, and P. Tam Tuning of the structure and parameters of a neural network using an improved genetic algorithm IEEE Trans. Neural Netw. 14 1 2003 79 88
-
(2003)
IEEE Trans. Neural Netw.
, vol.14
, Issue.1
, pp. 79-88
-
-
Leung, F.1
Lam, H.2
Ling, S.3
Tam, P.4
-
25
-
-
33745903481
-
Extreme learning machine theory and applications
-
G. Huang, Q. Zhun, and C. Siew Extreme learning machine theory and applications Neurocomputing 70 2006 489 501
-
(2006)
Neurocomputing
, vol.70
, pp. 489-501
-
-
Huang, G.1
Zhun, Q.2
Siew, C.3
-
26
-
-
0032123433
-
Statistical estimation of the number of hidden units for feedforward neural networks
-
O. Fujita Statistical estimation of the number of hidden units for feedforward neural networks Neural Netw. 11 5 1998 851 859
-
(1998)
Neural Netw.
, vol.11
, Issue.5
, pp. 851-859
-
-
Fujita, O.1
-
27
-
-
37849189858
-
Estimating the number of hidden neurons in a feedforward network using the singular value decomposition
-
E.J. Teoh, K.C. Tan, and C. Xiang Estimating the number of hidden neurons in a feedforward network using the singular value decomposition IEEE Trans. Neural Netw. 17 6 2006 1623 1629
-
(2006)
IEEE Trans. Neural Netw.
, vol.17
, Issue.6
, pp. 1623-1629
-
-
Teoh, E.J.1
Tan, K.C.2
Xiang, C.3
-
28
-
-
84867839878
-
Universal approximation of extreme learning machine with adaptive growth of hidden nodes
-
R. Zhang, Y. Lan, G. Huang, and Z. Xu Universal approximation of extreme learning machine with adaptive growth of hidden nodes IEEE Trans. Neural Netw. Learn. Syst. 23 2 2012 365 371
-
(2012)
IEEE Trans. Neural Netw. Learn. Syst.
, vol.23
, Issue.2
, pp. 365-371
-
-
Zhang, R.1
Lan, Y.2
Huang, G.3
Xu, Z.4
-
29
-
-
0742307322
-
Bounds on the number of hidden neurons in three-layer binary neural networks
-
Z. Zhang, X. Ma, and Y. Yang Bounds on the number of hidden neurons in three-layer binary neural networks Neural Netw. 16 7 2003 995 1002
-
(2003)
Neural Netw.
, vol.16
, Issue.7
, pp. 995-1002
-
-
Zhang, Z.1
Ma, X.2
Yang, Y.3
-
30
-
-
84950645271
-
The predictive sample reuse method with applications
-
S. Geisser The predictive sample reuse method with applications J. Am. Stat. Assoc. 70 350 1975 320 328
-
(1975)
J. Am. Stat. Assoc.
, vol.70
, Issue.350
, pp. 320-328
-
-
Geisser, S.1
-
31
-
-
77956649096
-
A survey of cross-validation procedures for model selection
-
S. Arlot, and A. Celisse A survey of cross-validation procedures for model selection Stat. Surv. 4 2010 40 79
-
(2010)
Stat. Surv.
, vol.4
, pp. 40-79
-
-
Arlot, S.1
Celisse, A.2
-
32
-
-
44349097636
-
Symmetric RBF classifier for nonlinear detection in multiple-antenna- aided systems
-
S. Chen, A. Wolfgang, C.J. Harris, and L. Hanzo Symmetric RBF classifier for nonlinear detection in multiple-antenna-aided systems IEEE Trans. Neural Netw. 19 5 2008 737 745
-
(2008)
IEEE Trans. Neural Netw.
, vol.19
, Issue.5
, pp. 737-745
-
-
Chen, S.1
Wolfgang, A.2
Harris, C.J.3
Hanzo, L.4
-
33
-
-
61549100585
-
A new RBF neural network with boundary value constraints
-
X. Hong, and S. Chen A new RBF neural network with boundary value constraints IEEE Trans. Syst. Man Cybern. Part B: Cybern. 39 1 2009 298 303
-
(2009)
IEEE Trans. Syst. Man Cybern. Part B: Cybern.
, vol.39
, Issue.1
, pp. 298-303
-
-
Hong, X.1
Chen, S.2
-
35
-
-
78650053003
-
-
Publishing House of Electronics Industry Beijing
-
J. Su, and S. Ruan MATLAB Practical Guide 2008 Publishing House of Electronics Industry Beijing
-
(2008)
MATLAB Practical Guide
-
-
Su, J.1
Ruan, S.2
-
36
-
-
78649934709
-
-
School of Information and Computer Science, University of California Irvine, CA 〈 〉
-
A. Frank, and A. Asuncion UCI Machine Learning Repository 2010 School of Information and Computer Science, University of California Irvine, CA 〈 http://archive.ics.uci.edu/ml 〉
-
(2010)
UCI Machine Learning Repository
-
-
Frank, A.1
Asuncion, A.2
-
37
-
-
84903814860
-
Machine learning for first-order theorem proving: Learning to select a good heuristic
-
in press
-
J. Bridge, S. Holden, L. Paulson, Machine learning for first-order theorem proving: learning to select a good heuristic, J. Autom. Reason., 10.1007/s10817-014-9301-5, in press.
-
J. Autom. Reason.
-
-
Bridge, J.1
Holden, S.2
Paulson, L.3
-
38
-
-
35548969323
-
Comparison of stochastic global optimization methods to estimate neural network weights
-
Lonnie Hamm, B.W. Brorsen, and Martin T. Hagan Comparison of stochastic global optimization methods to estimate neural network weights Neural Process. Lett. 26 3 2007 145 158
-
(2007)
Neural Process. Lett.
, vol.26
, Issue.3
, pp. 145-158
-
-
Hamm, L.1
Brorsen, B.W.2
Hagan, M.T.3
-
42
-
-
84866944849
-
An RBF neural network classifier with centers, variances and weights directly determined
-
Y. Zhang, K. Li, and N. Tang An RBF neural network classifier with centers, variances and weights directly determined Comput. Technol. Autom. 28 3 2009 5 9
-
(2009)
Comput. Technol. Autom.
, vol.28
, Issue.3
, pp. 5-9
-
-
Zhang, Y.1
Li, K.2
Tang, N.3
-
43
-
-
79955702502
-
LIBSVM a library for support vector machines
-
Software available at
-
C. Chang, and C. Lin LIBSVM a library for support vector machines ACM Trans. Intell. Syst. Technol. 2 3 2011 27:1 27:27 Software available at http://www.csie.ntu.edu.tw/cjlin/libsvm
-
(2011)
ACM Trans. Intell. Syst. Technol.
, vol.2
, Issue.3
, pp. 271-2727
-
-
Chang, C.1
Lin, C.2
-
44
-
-
84887252594
-
Support vector method for function approximation, regression estimation, and signal processing
-
MIT Press, Cambridge
-
V. Vapnik, S. Golowich, A.J. Smola, Support vector method for function approximation, regression estimation, and signal processing, in: Neural Information Processing Systems, MIT Press, Cambridge, 1997, pp. 281-287.
-
(1997)
Neural Information Processing Systems
, pp. 281-287
-
-
Vapnik, V.1
Golowich, S.2
Smola, A.J.3
-
45
-
-
0036856978
-
Robust support vector regression networks for function approximation with outliers
-
C. Chuang, S. Su, J. Jeng, and C. Hsiao Robust support vector regression networks for function approximation with outliers IEEE Trans. Neural Netw. 13 6 2002 1322 1330
-
(2002)
IEEE Trans. Neural Netw.
, vol.13
, Issue.6
, pp. 1322-1330
-
-
Chuang, C.1
Su, S.2
Jeng, J.3
Hsiao, C.4
-
46
-
-
84974662336
-
A comparison of ranking methods for classification algorithm selection
-
R.L. Mantaras, E. Plaza, Springer Berlin, Heidelberg
-
P.B. Brazdil, and C. Soares A comparison of ranking methods for classification algorithm selection R.L. Mantaras, E. Plaza, Machine Learning: ECML 2000 2000 Springer Berlin, Heidelberg 63 75
-
(2000)
Machine Learning: ECML 2000
, pp. 63-75
-
-
Brazdil, P.B.1
Soares, C.2
-
47
-
-
84858151057
-
Zhang neural network and its application to Newton iteration for matrix square root estimation
-
Y. Zhang, Y. Yang, B. Cai, and D. Guo Zhang neural network and its application to Newton iteration for matrix square root estimation Neural Comput. Appl. 21 3 2012 453 460.
-
(2012)
Neural Comput. Appl.
, vol.21
, Issue.3
, pp. 453-460
-
-
Zhang, Y.1
Yang, Y.2
Cai, B.3
Guo, D.4
|