메뉴 건너뛰기




Volumn 47, Issue 10, 2014, Pages 3414-3428

Cross-validation based weights and structure determination of Chebyshev-polynomial neural networks for pattern classification

Author keywords

Chebyshev polynomial; Cross validation; Neural network; Pattern classification; Robustness

Indexed keywords

NEURAL NETWORKS; PATTERN RECOGNITION; ROBUSTNESS (CONTROL SYSTEMS); SOFTWARE ENGINEERING;

EID: 84902369146     PISSN: 00313203     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.patcog.2014.04.026     Document Type: Article
Times cited : (64)

References (47)
  • 1
    • 0007834494 scopus 로고    scopus 로고
    • Pattern classification by linear goal programming and its extensions
    • H. Nakayama, and N. Kagaku Pattern classification by linear goal programming and its extensions J. Global Optim. 12 2 1998 111 126
    • (1998) J. Global Optim. , vol.12 , Issue.2 , pp. 111-126
    • Nakayama, H.1    Kagaku, N.2
  • 4
    • 83655192093 scopus 로고    scopus 로고
    • Data-core-based fuzzy min-max neural network for pattern classification
    • H. Zhang, J. Liu, D. Ma, and Z. Wang Data-core-based fuzzy min-max neural network for pattern classification IEEE Trans. Neural Netw. 22 12 2011 2339 2352
    • (2011) IEEE Trans. Neural Netw. , vol.22 , Issue.12 , pp. 2339-2352
    • Zhang, H.1    Liu, J.2    Ma, D.3    Wang, Z.4
  • 5
    • 0036556003 scopus 로고    scopus 로고
    • Constructing and training feed-forward neural networks for pattern classification
    • X. Jiang, and A.H.K.S. Wah Constructing and training feed-forward neural networks for pattern classification Pattern Recognit. 36 4 2003 853 867
    • (2003) Pattern Recognit. , vol.36 , Issue.4 , pp. 853-867
    • Jiang, X.1    Wah, A.H.K.S.2
  • 6
    • 33749240206 scopus 로고    scopus 로고
    • Multi-class pattern classification using neural networks
    • G. Ou, and Y.L. Murphey Multi-class pattern classification using neural networks Pattern Recognit. 40 1 2007 4 18
    • (2007) Pattern Recognit. , vol.40 , Issue.1 , pp. 4-18
    • Ou, G.1    Murphey, Y.L.2
  • 7
    • 0029341018 scopus 로고
    • A detailed comparison of backpropagation neural network and maximum-likelihood classifiers for urban land use classification
    • J.D. Paola, and R.A. Schowengerdt A detailed comparison of backpropagation neural network and maximum-likelihood classifiers for urban land use classification IEEE Trans. Geosci. Remote Sens. 33 4 1995 981 996
    • (1995) IEEE Trans. Geosci. Remote Sens. , vol.33 , Issue.4 , pp. 981-996
    • Paola, J.D.1    Schowengerdt, R.A.2
  • 9
    • 0033101401 scopus 로고    scopus 로고
    • Verification of the nonparametric characteristics of backpropagation neural networks for image classification
    • W. Zhou Verification of the nonparametric characteristics of backpropagation neural networks for image classification IEEE Trans. Geosci. Remote Sens. 37 2 1999 771 779
    • (1999) IEEE Trans. Geosci. Remote Sens. , vol.37 , Issue.2 , pp. 771-779
    • Zhou, W.1
  • 11
    • 0029375531 scopus 로고
    • On the local minima free condition of backpropagation learning
    • X. Yu, and G. Chen On the local minima free condition of backpropagation learning IEEE Trans. Neural Netw. 6 5 1995 1300 1303
    • (1995) IEEE Trans. Neural Netw. , vol.6 , Issue.5 , pp. 1300-1303
    • Yu, X.1    Chen, G.2
  • 12
    • 84866712461 scopus 로고    scopus 로고
    • Weights direct determination of feedforward neural networks without iterative BP-training
    • L. Wang, T. Hong, IGI Globa Hershey
    • Y. Zhang, and N. Tan Weights direct determination of feedforward neural networks without iterative BP-training L. Wang, T. Hong, Intelligent Soft Computation and Evolving Data Mining 2010 IGI Globa Hershey 197 225
    • (2010) Intelligent Soft Computation and Evolving Data Mining , pp. 197-225
    • Zhang, Y.1    Tan, N.2
  • 13
    • 84925236971 scopus 로고    scopus 로고
    • Weights and structure determination of artificial neuronets
    • W.J. Zhang, Nova Science Publishers New York (Chapter 5)
    • Y. Zhang, X. Yu, L. Xiao, W. Li, and Z. Fan Weights and structure determination of artificial neuronets W.J. Zhang, Self-Organization: Theories and Methods 2013 Nova Science Publishers New York 109 153 (Chapter 5)
    • (2013) Self-Organization: Theories and Methods , pp. 109-153
    • Zhang, Y.1    Yu, X.2    Xiao, L.3    Li, W.4    Fan, Z.5
  • 15
    • 84947802541 scopus 로고    scopus 로고
    • Polynomial approximation
    • P. Armitage, T. Colton, Wiley London
    • G.K. Smyth Polynomial approximation P. Armitage, T. Colton, Encyclopedia of Biostatistics Second Edition 2004 Wiley London 4136 4140
    • (2004) Encyclopedia of Biostatistics Second Edition , pp. 4136-4140
    • Smyth, G.K.1
  • 16
    • 83555179950 scopus 로고    scopus 로고
    • Using Chebyshev polynomials to approximate partial differential equations
    • G. Caporale, and M. Cerrato Using Chebyshev polynomials to approximate partial differential equations Comput. Econ. 35 3 2010 235 244
    • (2010) Comput. Econ. , vol.35 , Issue.3 , pp. 235-244
    • Caporale, G.1    Cerrato, M.2
  • 17
    • 0032287679 scopus 로고    scopus 로고
    • The Chebyshev-polynomials-based unified model neural networks for function approximation
    • T. Lee, and J. Jeng The Chebyshev-polynomials-based unified model neural networks for function approximation IEEE Trans. Syst. Man Cybern. Part B: Cybern. 28 6 1998 925 935
    • (1998) IEEE Trans. Syst. Man Cybern. Part B: Cybern. , vol.28 , Issue.6 , pp. 925-935
    • Lee, T.1    Jeng, J.2
  • 20
    • 0036685272 scopus 로고    scopus 로고
    • Nonlinear dynamic system identification using Chebyshev functional link artificial neural networks
    • J. Patra, and A. Kot Nonlinear dynamic system identification using Chebyshev functional link artificial neural networks IEEE Trans. Syst. Man Cybern. Part B: Cybern. 32 4 2002 505 511
    • (2002) IEEE Trans. Syst. Man Cybern. Part B: Cybern. , vol.32 , Issue.4 , pp. 505-511
    • Patra, J.1    Kot, A.2
  • 21
    • 33646760968 scopus 로고    scopus 로고
    • Extension of Bernstein polynomials to infinite dimensional case
    • L. D'Ambrosio Extension of Bernstein polynomials to infinite dimensional case J. Approx. Theory 140 2 2006 191 202
    • (2006) J. Approx. Theory , vol.140 , Issue.2 , pp. 191-202
    • D'Ambrosio, L.1
  • 23
    • 0037276988 scopus 로고    scopus 로고
    • Tuning of the structure and parameters of a neural network using an improved genetic algorithm
    • F. Leung, H. Lam, S. Ling, and P. Tam Tuning of the structure and parameters of a neural network using an improved genetic algorithm IEEE Trans. Neural Netw. 14 1 2003 79 88
    • (2003) IEEE Trans. Neural Netw. , vol.14 , Issue.1 , pp. 79-88
    • Leung, F.1    Lam, H.2    Ling, S.3    Tam, P.4
  • 25
    • 33745903481 scopus 로고    scopus 로고
    • Extreme learning machine theory and applications
    • G. Huang, Q. Zhun, and C. Siew Extreme learning machine theory and applications Neurocomputing 70 2006 489 501
    • (2006) Neurocomputing , vol.70 , pp. 489-501
    • Huang, G.1    Zhun, Q.2    Siew, C.3
  • 26
    • 0032123433 scopus 로고    scopus 로고
    • Statistical estimation of the number of hidden units for feedforward neural networks
    • O. Fujita Statistical estimation of the number of hidden units for feedforward neural networks Neural Netw. 11 5 1998 851 859
    • (1998) Neural Netw. , vol.11 , Issue.5 , pp. 851-859
    • Fujita, O.1
  • 27
    • 37849189858 scopus 로고    scopus 로고
    • Estimating the number of hidden neurons in a feedforward network using the singular value decomposition
    • E.J. Teoh, K.C. Tan, and C. Xiang Estimating the number of hidden neurons in a feedforward network using the singular value decomposition IEEE Trans. Neural Netw. 17 6 2006 1623 1629
    • (2006) IEEE Trans. Neural Netw. , vol.17 , Issue.6 , pp. 1623-1629
    • Teoh, E.J.1    Tan, K.C.2    Xiang, C.3
  • 28
    • 84867839878 scopus 로고    scopus 로고
    • Universal approximation of extreme learning machine with adaptive growth of hidden nodes
    • R. Zhang, Y. Lan, G. Huang, and Z. Xu Universal approximation of extreme learning machine with adaptive growth of hidden nodes IEEE Trans. Neural Netw. Learn. Syst. 23 2 2012 365 371
    • (2012) IEEE Trans. Neural Netw. Learn. Syst. , vol.23 , Issue.2 , pp. 365-371
    • Zhang, R.1    Lan, Y.2    Huang, G.3    Xu, Z.4
  • 29
    • 0742307322 scopus 로고    scopus 로고
    • Bounds on the number of hidden neurons in three-layer binary neural networks
    • Z. Zhang, X. Ma, and Y. Yang Bounds on the number of hidden neurons in three-layer binary neural networks Neural Netw. 16 7 2003 995 1002
    • (2003) Neural Netw. , vol.16 , Issue.7 , pp. 995-1002
    • Zhang, Z.1    Ma, X.2    Yang, Y.3
  • 30
    • 84950645271 scopus 로고
    • The predictive sample reuse method with applications
    • S. Geisser The predictive sample reuse method with applications J. Am. Stat. Assoc. 70 350 1975 320 328
    • (1975) J. Am. Stat. Assoc. , vol.70 , Issue.350 , pp. 320-328
    • Geisser, S.1
  • 31
    • 77956649096 scopus 로고    scopus 로고
    • A survey of cross-validation procedures for model selection
    • S. Arlot, and A. Celisse A survey of cross-validation procedures for model selection Stat. Surv. 4 2010 40 79
    • (2010) Stat. Surv. , vol.4 , pp. 40-79
    • Arlot, S.1    Celisse, A.2
  • 32
    • 44349097636 scopus 로고    scopus 로고
    • Symmetric RBF classifier for nonlinear detection in multiple-antenna- aided systems
    • S. Chen, A. Wolfgang, C.J. Harris, and L. Hanzo Symmetric RBF classifier for nonlinear detection in multiple-antenna-aided systems IEEE Trans. Neural Netw. 19 5 2008 737 745
    • (2008) IEEE Trans. Neural Netw. , vol.19 , Issue.5 , pp. 737-745
    • Chen, S.1    Wolfgang, A.2    Harris, C.J.3    Hanzo, L.4
  • 33
    • 61549100585 scopus 로고    scopus 로고
    • A new RBF neural network with boundary value constraints
    • X. Hong, and S. Chen A new RBF neural network with boundary value constraints IEEE Trans. Syst. Man Cybern. Part B: Cybern. 39 1 2009 298 303
    • (2009) IEEE Trans. Syst. Man Cybern. Part B: Cybern. , vol.39 , Issue.1 , pp. 298-303
    • Hong, X.1    Chen, S.2
  • 35
    • 78650053003 scopus 로고    scopus 로고
    • Publishing House of Electronics Industry Beijing
    • J. Su, and S. Ruan MATLAB Practical Guide 2008 Publishing House of Electronics Industry Beijing
    • (2008) MATLAB Practical Guide
    • Su, J.1    Ruan, S.2
  • 36
    • 78649934709 scopus 로고    scopus 로고
    • School of Information and Computer Science, University of California Irvine, CA 〈 〉
    • A. Frank, and A. Asuncion UCI Machine Learning Repository 2010 School of Information and Computer Science, University of California Irvine, CA 〈 http://archive.ics.uci.edu/ml 〉
    • (2010) UCI Machine Learning Repository
    • Frank, A.1    Asuncion, A.2
  • 37
    • 84903814860 scopus 로고    scopus 로고
    • Machine learning for first-order theorem proving: Learning to select a good heuristic
    • in press
    • J. Bridge, S. Holden, L. Paulson, Machine learning for first-order theorem proving: learning to select a good heuristic, J. Autom. Reason., 10.1007/s10817-014-9301-5, in press.
    • J. Autom. Reason.
    • Bridge, J.1    Holden, S.2    Paulson, L.3
  • 38
    • 35548969323 scopus 로고    scopus 로고
    • Comparison of stochastic global optimization methods to estimate neural network weights
    • Lonnie Hamm, B.W. Brorsen, and Martin T. Hagan Comparison of stochastic global optimization methods to estimate neural network weights Neural Process. Lett. 26 3 2007 145 158
    • (2007) Neural Process. Lett. , vol.26 , Issue.3 , pp. 145-158
    • Hamm, L.1    Brorsen, B.W.2    Hagan, M.T.3
  • 42
    • 84866944849 scopus 로고    scopus 로고
    • An RBF neural network classifier with centers, variances and weights directly determined
    • Y. Zhang, K. Li, and N. Tang An RBF neural network classifier with centers, variances and weights directly determined Comput. Technol. Autom. 28 3 2009 5 9
    • (2009) Comput. Technol. Autom. , vol.28 , Issue.3 , pp. 5-9
    • Zhang, Y.1    Li, K.2    Tang, N.3
  • 43
    • 79955702502 scopus 로고    scopus 로고
    • LIBSVM a library for support vector machines
    • Software available at
    • C. Chang, and C. Lin LIBSVM a library for support vector machines ACM Trans. Intell. Syst. Technol. 2 3 2011 27:1 27:27 Software available at http://www.csie.ntu.edu.tw/cjlin/libsvm
    • (2011) ACM Trans. Intell. Syst. Technol. , vol.2 , Issue.3 , pp. 271-2727
    • Chang, C.1    Lin, C.2
  • 44
    • 84887252594 scopus 로고    scopus 로고
    • Support vector method for function approximation, regression estimation, and signal processing
    • MIT Press, Cambridge
    • V. Vapnik, S. Golowich, A.J. Smola, Support vector method for function approximation, regression estimation, and signal processing, in: Neural Information Processing Systems, MIT Press, Cambridge, 1997, pp. 281-287.
    • (1997) Neural Information Processing Systems , pp. 281-287
    • Vapnik, V.1    Golowich, S.2    Smola, A.J.3
  • 45
    • 0036856978 scopus 로고    scopus 로고
    • Robust support vector regression networks for function approximation with outliers
    • C. Chuang, S. Su, J. Jeng, and C. Hsiao Robust support vector regression networks for function approximation with outliers IEEE Trans. Neural Netw. 13 6 2002 1322 1330
    • (2002) IEEE Trans. Neural Netw. , vol.13 , Issue.6 , pp. 1322-1330
    • Chuang, C.1    Su, S.2    Jeng, J.3    Hsiao, C.4
  • 46
    • 84974662336 scopus 로고    scopus 로고
    • A comparison of ranking methods for classification algorithm selection
    • R.L. Mantaras, E. Plaza, Springer Berlin, Heidelberg
    • P.B. Brazdil, and C. Soares A comparison of ranking methods for classification algorithm selection R.L. Mantaras, E. Plaza, Machine Learning: ECML 2000 2000 Springer Berlin, Heidelberg 63 75
    • (2000) Machine Learning: ECML 2000 , pp. 63-75
    • Brazdil, P.B.1    Soares, C.2
  • 47
    • 84858151057 scopus 로고    scopus 로고
    • Zhang neural network and its application to Newton iteration for matrix square root estimation
    • Y. Zhang, Y. Yang, B. Cai, and D. Guo Zhang neural network and its application to Newton iteration for matrix square root estimation Neural Comput. Appl. 21 3 2012 453 460.
    • (2012) Neural Comput. Appl. , vol.21 , Issue.3 , pp. 453-460
    • Zhang, Y.1    Yang, Y.2    Cai, B.3    Guo, D.4


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.