메뉴 건너뛰기




Volumn 71, Issue , 2014, Pages 368-380

Energy and exergy analysis as tools for optimization of hydrogen production by glycerol autothermal reforming

Author keywords

Autothermal reforming; Design of experiments; Energy exergy assessment; Glycerol; Hydrogen

Indexed keywords

CARBON MONOXIDE; CHEMICAL REACTIONS; DESIGN OF EXPERIMENTS; EXERGY; HYDROGEN; HYDROGEN PRODUCTION; METHANE;

EID: 84902355013     PISSN: 09601481     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.renene.2014.05.056     Document Type: Article
Times cited : (45)

References (61)
  • 1
    • 77955573187 scopus 로고    scopus 로고
    • Natural gas usage as a heat source for integrated SMR and thermochemical hydrogen production technologies
    • Jaber O., Naterer G.F., Dincer I. Natural gas usage as a heat source for integrated SMR and thermochemical hydrogen production technologies. Int J Hydrogen Energy 2010, 35:8569-8579.
    • (2010) Int J Hydrogen Energy , vol.35 , pp. 8569-8579
    • Jaber, O.1    Naterer, G.F.2    Dincer, I.3
  • 2
    • 84876122732 scopus 로고    scopus 로고
    • Areview on development of industrial processes and emerging techniques for production of hydrogen from renewable and sustainable sources
    • Chaubey R., Sahu S., James O.O., Maity S. Areview on development of industrial processes and emerging techniques for production of hydrogen from renewable and sustainable sources. Renew Sustain Energy Rev 2013, 23:443-462.
    • (2013) Renew Sustain Energy Rev , vol.23 , pp. 443-462
    • Chaubey, R.1    Sahu, S.2    James, O.O.3    Maity, S.4
  • 5
    • 11344254687 scopus 로고    scopus 로고
    • From hydrocarbon to hydrogen-carbon to hydrogen economy
    • Muradov N.Z., Veziroǧlu T.N. From hydrocarbon to hydrogen-carbon to hydrogen economy. Int J Hydrogen Energy 2005, 30:225-237.
    • (2005) Int J Hydrogen Energy , vol.30 , pp. 225-237
    • Muradov, N.Z.1    Veziroǧlu, T.N.2
  • 6
    • 33749984841 scopus 로고    scopus 로고
    • Design of an integrated membrane system for a high level hydrogen purification
    • Chiappetta G., Clarizia G., Drioli E. Design of an integrated membrane system for a high level hydrogen purification. Chem Eng J 2006, 124:29-40.
    • (2006) Chem Eng J , vol.124 , pp. 29-40
    • Chiappetta, G.1    Clarizia, G.2    Drioli, E.3
  • 7
    • 56449117526 scopus 로고    scopus 로고
    • Synergistic roles of off-peak electrolysis and thermo-chemical production of hydrogen from nuclear energy in Canada
    • Naterer G.F., Fowler M., Cotton J., Gabriel K. Synergistic roles of off-peak electrolysis and thermo-chemical production of hydrogen from nuclear energy in Canada. Int J Hydrogen Energy 2008, 33:6849-6857.
    • (2008) Int J Hydrogen Energy , vol.33 , pp. 6849-6857
    • Naterer, G.F.1    Fowler, M.2    Cotton, J.3    Gabriel, K.4
  • 8
    • 0037194759 scopus 로고    scopus 로고
    • Hydrogen from catalytic reforming of biomass-derived hydrocarbons in liquid water
    • Cortright R.D., Davda R.R., Dumesic J.A. Hydrogen from catalytic reforming of biomass-derived hydrocarbons in liquid water. Nature 2002, 18:964-967.
    • (2002) Nature , vol.18 , pp. 964-967
    • Cortright, R.D.1    Davda, R.R.2    Dumesic, J.A.3
  • 10
    • 84860275671 scopus 로고    scopus 로고
    • Available at:, [accessed 15.07.12], ABG Inc
    • ABG Inc Glycerin market analysis 2007, Available at:, [accessed 15.07.12]. http://www.asasea.com/download_doc.php.
    • (2007) Glycerin market analysis
  • 12
    • 14844312080 scopus 로고    scopus 로고
    • An unlikely impact
    • McCoy M. An unlikely impact. Chem Eng News 2005, 83:19-20.
    • (2005) Chem Eng News , vol.83 , pp. 19-20
    • McCoy, M.1
  • 13
    • 77953127540 scopus 로고    scopus 로고
    • Hydrogen production from glycerol in a membrane less microbial electrolysis cell
    • Escapa A., Manuel M.F., Moran A., Gomez X., Guiot S.R., Tartakovsky B. Hydrogen production from glycerol in a membrane less microbial electrolysis cell. Energy Fuels 2009, 23:4612-4618.
    • (2009) Energy Fuels , vol.23 , pp. 4612-4618
    • Escapa, A.1    Manuel, M.F.2    Moran, A.3    Gomez, X.4    Guiot, S.R.5    Tartakovsky, B.6
  • 14
    • 70350517365 scopus 로고    scopus 로고
    • Enhanced hydrogen and 1,3-propanediol production from glycerol by fermentation using mixed cultures
    • Priscilla A.S., Joe M.P., Wallis A.L., Bruce E.L. Enhanced hydrogen and 1,3-propanediol production from glycerol by fermentation using mixed cultures. Biotechnol Bioeng 2009, 104:1098-1106.
    • (2009) Biotechnol Bioeng , vol.104 , pp. 1098-1106
    • Priscilla, A.S.1    Joe, M.P.2    Wallis, A.L.3    Bruce, E.L.4
  • 15
    • 57349088282 scopus 로고    scopus 로고
    • Glycerol: a promising and abundant carbon source for industrial microbiology
    • Gervásio P.S., Matthias M., Jonas C. Glycerol: a promising and abundant carbon source for industrial microbiology. Biotechnol Adv 2009, 27:30-39.
    • (2009) Biotechnol Adv , vol.27 , pp. 30-39
    • Gervásio, P.S.1    Matthias, M.2    Jonas, C.3
  • 16
    • 79957844172 scopus 로고    scopus 로고
    • Renewable hydrogen generation by steam reforming of glycerol over zirconia promoted ceria supported catalyst
    • Dave C.D., Pant K.K. Renewable hydrogen generation by steam reforming of glycerol over zirconia promoted ceria supported catalyst. Renew Energy 2011, 36:3195-3202.
    • (2011) Renew Energy , vol.36 , pp. 3195-3202
    • Dave, C.D.1    Pant, K.K.2
  • 17
    • 84883822744 scopus 로고    scopus 로고
    • Autothermal steam reforming of glycerol for hydrogen production over packed-bed and Pd/Ag alloy membrane reactors
    • Lin K.H., Chang A.C.C., Lin W.H., Chen S.H., Chang C.Y., Chang H.F. Autothermal steam reforming of glycerol for hydrogen production over packed-bed and Pd/Ag alloy membrane reactors. Int J Hydrogen Energy 2013, 38:12946-12952.
    • (2013) Int J Hydrogen Energy , vol.38 , pp. 12946-12952
    • Lin, K.H.1    Chang, A.C.C.2    Lin, W.H.3    Chen, S.H.4    Chang, C.Y.5    Chang, H.F.6
  • 18
    • 77954782816 scopus 로고    scopus 로고
    • Catalytic gasification of glycerol in supercritical water
    • May A., Salvadó J., Torras C., Montané D. Catalytic gasification of glycerol in supercritical water. Chem Eng J 2010, 160:751-759.
    • (2010) Chem Eng J , vol.160 , pp. 751-759
    • May, A.1    Salvadó, J.2    Torras, C.3    Montané, D.4
  • 19
    • 40749085587 scopus 로고    scopus 로고
    • Pyrolysis of glycerol for the production of hydrogen or syn gas
    • Valliyappan T., Bakhshi N.N., Dalai A.K. Pyrolysis of glycerol for the production of hydrogen or syn gas. Bioresour Technol 2008, 99:4476-4483.
    • (2008) Bioresour Technol , vol.99 , pp. 4476-4483
    • Valliyappan, T.1    Bakhshi, N.N.2    Dalai, A.K.3
  • 20
    • 84864498040 scopus 로고    scopus 로고
    • Production of renewable hydrogen by aqueous-phase reforming of glycerol over Ni-Cu catalysts derived from hydrotalcite precursors
    • Tuza P.V., Manfro R.L., Ribeiro N.F.P., Souza M.M.V.M. Production of renewable hydrogen by aqueous-phase reforming of glycerol over Ni-Cu catalysts derived from hydrotalcite precursors. Renew Energy 2013, 50:408-414.
    • (2013) Renew Energy , vol.50 , pp. 408-414
    • Tuza, P.V.1    Manfro, R.L.2    Ribeiro, N.F.P.3    Souza, M.M.V.M.4
  • 21
    • 84881233075 scopus 로고    scopus 로고
    • Glycerol steam reforming over perovskite-derived nickel-based catalysts
    • Wu G., Li S., Zhang C., Wang T., Gong J. Glycerol steam reforming over perovskite-derived nickel-based catalysts. Applied Catal B Environ 2014, 144:277-285.
    • (2014) Applied Catal B Environ , vol.144 , pp. 277-285
    • Wu, G.1    Li, S.2    Zhang, C.3    Wang, T.4    Gong, J.5
  • 23
    • 0034744415 scopus 로고    scopus 로고
    • Hydrogen from hydrocarbon fuels for fuel cells
    • Ahmed S., Krumpelt M. Hydrogen from hydrocarbon fuels for fuel cells. Int J Hydrogen Energy 2001, 26:291-301.
    • (2001) Int J Hydrogen Energy , vol.26 , pp. 291-301
    • Ahmed, S.1    Krumpelt, M.2
  • 24
    • 38349131429 scopus 로고    scopus 로고
    • Hydrogen from coal-derived methanol via autothermal reforming processes
    • Yoon H.C., Erickson P.A. Hydrogen from coal-derived methanol via autothermal reforming processes. Int J Hydrogen Energy 2008, 33:57-63.
    • (2008) Int J Hydrogen Energy , vol.33 , pp. 57-63
    • Yoon, H.C.1    Erickson, P.A.2
  • 25
  • 26
    • 77954833585 scopus 로고    scopus 로고
    • Thermodynamic study of hydrogen production from crude glycerol autothermal reforming for fuel cell applications
    • Authayanun S., Arpornwichanop A., Paengjuntuek W., Assabumrungrat S. Thermodynamic study of hydrogen production from crude glycerol autothermal reforming for fuel cell applications. Int J Hydrogen Energy 2010, 35:6617-6623.
    • (2010) Int J Hydrogen Energy , vol.35 , pp. 6617-6623
    • Authayanun, S.1    Arpornwichanop, A.2    Paengjuntuek, W.3    Assabumrungrat, S.4
  • 27
    • 77949913831 scopus 로고    scopus 로고
    • Thermodynamic analysis of dry autothermal reforming of glycerol
    • Kale G.R., Kulkarni B.D. Thermodynamic analysis of dry autothermal reforming of glycerol. Fuel Process Technol 2010, 91:520-530.
    • (2010) Fuel Process Technol , vol.91 , pp. 520-530
    • Kale, G.R.1    Kulkarni, B.D.2
  • 28
    • 67650735224 scopus 로고    scopus 로고
    • Thermodynamic analysis of hydrogen production from glycerol autothermal reforming
    • Wang H., Wang X., Li M., Li S., Wang S., Ma X. Thermodynamic analysis of hydrogen production from glycerol autothermal reforming. Int J Hydrogen Energy 2009, 34:5683-5690.
    • (2009) Int J Hydrogen Energy , vol.34 , pp. 5683-5690
    • Wang, H.1    Wang, X.2    Li, M.3    Li, S.4    Wang, S.5    Ma, X.6
  • 29
    • 33750508788 scopus 로고    scopus 로고
    • Renewable hydrogen by autothermal steam reforming of volatile carbohydrates
    • Dauenhauer P.J., Salge J.R., Schmidt L.D. Renewable hydrogen by autothermal steam reforming of volatile carbohydrates. JCatal 2006, 244:238-247.
    • (2006) JCatal , vol.244 , pp. 238-247
    • Dauenhauer, P.J.1    Salge, J.R.2    Schmidt, L.D.3
  • 30
    • 79952444587 scopus 로고    scopus 로고
    • Thermodynamic analysis of hydrogen generation via oxidative steam reforming of glycerol
    • Yang G., Yu H., Peng F., Wang H., Yang J., Xie D. Thermodynamic analysis of hydrogen generation via oxidative steam reforming of glycerol. Renew Energy 2011, 36:2120-2127.
    • (2011) Renew Energy , vol.36 , pp. 2120-2127
    • Yang, G.1    Yu, H.2    Peng, F.3    Wang, H.4    Yang, J.5    Xie, D.6
  • 31
    • 77955278340 scopus 로고    scopus 로고
    • Energetic and exergetic performance evaluation of the quadruple-effect evaporator unit in tomato paste production
    • Sogut Z., Ilten N., Oktay Z. Energetic and exergetic performance evaluation of the quadruple-effect evaporator unit in tomato paste production. Energy 2010, 35:3821-3826.
    • (2010) Energy , vol.35 , pp. 3821-3826
    • Sogut, Z.1    Ilten, N.2    Oktay, Z.3
  • 34
    • 57849113664 scopus 로고    scopus 로고
    • Thermodynamic analysis of glycerin steam reforming
    • Wang X.D., Li S.R., Wang H., Liu B., Ma X.B. Thermodynamic analysis of glycerin steam reforming. Energy Fuels 2008, 22:4285-4291.
    • (2008) Energy Fuels , vol.22 , pp. 4285-4291
    • Wang, X.D.1    Li, S.R.2    Wang, H.3    Liu, B.4    Ma, X.B.5
  • 35
    • 79955465839 scopus 로고    scopus 로고
    • High-yield biohydrogen production from biodiesel manufacturing waste by Thermotoga neapolitana
    • Ngo T.A., Kim M.S., Sim S.J. High-yield biohydrogen production from biodiesel manufacturing waste by Thermotoga neapolitana. Int J Hydrogen Energy 2011, 36:5836-5842.
    • (2011) Int J Hydrogen Energy , vol.36 , pp. 5836-5842
    • Ngo, T.A.1    Kim, M.S.2    Sim, S.J.3
  • 36
    • 67649577235 scopus 로고    scopus 로고
    • High hydrogen production from glycerol or glucose by electrohydrogenesis using microbial electrolysis cells
    • Selembo P.A., Perez J.M., Lloyd W.A., Logan B.E. High hydrogen production from glycerol or glucose by electrohydrogenesis using microbial electrolysis cells. Int J Hydrogen Energy 2009, 34:5373-5381.
    • (2009) Int J Hydrogen Energy , vol.34 , pp. 5373-5381
    • Selembo, P.A.1    Perez, J.M.2    Lloyd, W.A.3    Logan, B.E.4
  • 37
    • 35148846126 scopus 로고    scopus 로고
    • Alaboratory study of producing docosahexaenoic acid from biodiesel-waste glycerol by microalgal fermentation
    • Zhanyou C., Denver P., Zhiyou W., Craig F., Shulin C. Alaboratory study of producing docosahexaenoic acid from biodiesel-waste glycerol by microalgal fermentation. Process Biochem 2007, 42:1537-1545.
    • (2007) Process Biochem , vol.42 , pp. 1537-1545
    • Zhanyou, C.1    Denver, P.2    Zhiyou, W.3    Craig, F.4    Shulin, C.5
  • 38
    • 48949120318 scopus 로고    scopus 로고
    • Production of hydrogen and syngas via steam gasification of glycerol in a fixed-bed reactor
    • Valliyappan T., Ferdous D., Bakhshi N.N., Dalai A.K. Production of hydrogen and syngas via steam gasification of glycerol in a fixed-bed reactor. Topics Catal 2008, 49:59-67.
    • (2008) Topics Catal , vol.49 , pp. 59-67
    • Valliyappan, T.1    Ferdous, D.2    Bakhshi, N.N.3    Dalai, A.K.4
  • 40
    • 84875822074 scopus 로고    scopus 로고
    • Thermodynamic analysis of hydrogen production by steam and autothermal reforming of soybean waste frying oil
    • Hajjaji N., Falah N., Khila Z., Pons M.N. Thermodynamic analysis of hydrogen production by steam and autothermal reforming of soybean waste frying oil. Energy Convers Manage 2013, 70:174-186.
    • (2013) Energy Convers Manage , vol.70 , pp. 174-186
    • Hajjaji, N.1    Falah, N.2    Khila, Z.3    Pons, M.N.4
  • 41
    • 84874117019 scopus 로고    scopus 로고
    • Hydrogen production via steam and autothermal reforming of beef tallow: a thermodynamic investigation
    • Hajjaji N., Pons M.N. Hydrogen production via steam and autothermal reforming of beef tallow: a thermodynamic investigation. Int J Hydrogen Energy 2013, 38:2199-2211.
    • (2013) Int J Hydrogen Energy , vol.38 , pp. 2199-2211
    • Hajjaji, N.1    Pons, M.N.2
  • 43
    • 84871731786 scopus 로고    scopus 로고
    • Autothermal reforming of glycerol in a dual layer monolith catalyst
    • Liu Y., Farrauto R., Lawal A. Autothermal reforming of glycerol in a dual layer monolith catalyst. Chem Eng Sci 2013, 89:31-39.
    • (2013) Chem Eng Sci , vol.89 , pp. 31-39
    • Liu, Y.1    Farrauto, R.2    Lawal, A.3
  • 44
    • 70349195827 scopus 로고    scopus 로고
    • Aportable fuel processor for hydrogen production from ethanol in a 250Wel fuel cell system
    • Aicher T., Full J., Schaadt A. Aportable fuel processor for hydrogen production from ethanol in a 250Wel fuel cell system. Int J Hydrogen Energy 2009, 34:8006-8015.
    • (2009) Int J Hydrogen Energy , vol.34 , pp. 8006-8015
    • Aicher, T.1    Full, J.2    Schaadt, A.3
  • 45
    • 38049066008 scopus 로고    scopus 로고
    • Theoretical analysis on the autothermal reforming process of ethanol as fuel for a proton exchange membrane fuel cell system
    • Perna A. Theoretical analysis on the autothermal reforming process of ethanol as fuel for a proton exchange membrane fuel cell system. JFuel Cell Sci Technol 2007, 4:468-473.
    • (2007) JFuel Cell Sci Technol , vol.4 , pp. 468-473
    • Perna, A.1
  • 46
    • 77950297841 scopus 로고    scopus 로고
    • Thermodynamic analysis of ethanol processors - PEM fuel cell systems
    • Salemme L., Menna L., Simeone M. Thermodynamic analysis of ethanol processors - PEM fuel cell systems. Int J Hydrogen Energy 2010, 35:3480-3489.
    • (2010) Int J Hydrogen Energy , vol.35 , pp. 3480-3489
    • Salemme, L.1    Menna, L.2    Simeone, M.3
  • 47
    • 84864818018 scopus 로고    scopus 로고
    • Assessment and comparison of different catalytic coupling exothermic and endothermic reactions: a review
    • Rahimpour M.R., Dehnavi M.R., Allahgholipour F., Iranshahi D., Jokar S.M. Assessment and comparison of different catalytic coupling exothermic and endothermic reactions: a review. Appl Energy 2012, 99:496-512.
    • (2012) Appl Energy , vol.99 , pp. 496-512
    • Rahimpour, M.R.1    Dehnavi, M.R.2    Allahgholipour, F.3    Iranshahi, D.4    Jokar, S.M.5
  • 48
    • 33845739405 scopus 로고    scopus 로고
    • Simulation of a hydrogen production and purification system for a PEM fuel-cell using bioethanol as raw material
    • Giunta P., Mosquera C., Amadeoa N., Laborde M. Simulation of a hydrogen production and purification system for a PEM fuel-cell using bioethanol as raw material. JPower Sources 2007, 164:336-343.
    • (2007) JPower Sources , vol.164 , pp. 336-343
    • Giunta, P.1    Mosquera, C.2    Amadeoa, N.3    Laborde, M.4
  • 49
    • 36549019525 scopus 로고    scopus 로고
    • Exergy analysis of hydrogen production via steam methane reforming
    • Simpson A.P., Lutz A.E. Exergy analysis of hydrogen production via steam methane reforming. Int J Hydrogen Energy 2007, 32:4811-4820.
    • (2007) Int J Hydrogen Energy , vol.32 , pp. 4811-4820
    • Simpson, A.P.1    Lutz, A.E.2
  • 50
    • 1942536611 scopus 로고    scopus 로고
    • Thermodynamic analysis of hydrogen production by steam reforming
    • Lutz A., Bradshaw R., Keller J., Witmer D. Thermodynamic analysis of hydrogen production by steam reforming. Int J Hydrogen Energy 2003, 28:159-167.
    • (2003) Int J Hydrogen Energy , vol.28 , pp. 159-167
    • Lutz, A.1    Bradshaw, R.2    Keller, J.3    Witmer, D.4
  • 51
    • 84867405050 scopus 로고    scopus 로고
    • Comparative exergy analysis of sorption enhanced and conventional methane steam reforming
    • Tzanetis K.F., Martavaltzi C.S., Lemonidou A.A. Comparative exergy analysis of sorption enhanced and conventional methane steam reforming. Int J Hydrogen Energy 2012, 37:16308-16320.
    • (2012) Int J Hydrogen Energy , vol.37 , pp. 16308-16320
    • Tzanetis, K.F.1    Martavaltzi, C.S.2    Lemonidou, A.A.3
  • 52
    • 33847419583 scopus 로고    scopus 로고
    • Areview and assessment of the energy utilization efficiency in the Turkish industrial sector using energy and exergy analysis method
    • Utlu Z., Hepbasli A. Areview and assessment of the energy utilization efficiency in the Turkish industrial sector using energy and exergy analysis method. Renew Sustain Energy Rev 2007, 11:1438-1459.
    • (2007) Renew Sustain Energy Rev , vol.11 , pp. 1438-1459
    • Utlu, Z.1    Hepbasli, A.2
  • 53
    • 0030268013 scopus 로고    scopus 로고
    • Exergy analysis with a flowsheeting simulator-I. Theory: calculating exergies of material streams
    • Hinderink A.P., Kerkhof F., Lie A., Arons J.S., Kooi H.J. Exergy analysis with a flowsheeting simulator-I. Theory: calculating exergies of material streams. Chem Eng Sci 1996, 51:4693-4700.
    • (1996) Chem Eng Sci , vol.51 , pp. 4693-4700
    • Hinderink, A.P.1    Kerkhof, F.2    Lie, A.3    Arons, J.S.4    Kooi, H.J.5
  • 54
    • 84870494247 scopus 로고    scopus 로고
    • Hydrogen production from yellow glycerol via catalytic oxidative steam reforming
    • Kamonsuangkasem K., Therdthianwong S., Therdthianwong A. Hydrogen production from yellow glycerol via catalytic oxidative steam reforming. Fuel Process Technol 2013, 106:695-703.
    • (2013) Fuel Process Technol , vol.106 , pp. 695-703
    • Kamonsuangkasem, K.1    Therdthianwong, S.2    Therdthianwong, A.3
  • 55
    • 38749133344 scopus 로고    scopus 로고
    • Experimental studies on hydrogen generation by methane autothermal reforming over nickel-based catalyst
    • Wang H.M. Experimental studies on hydrogen generation by methane autothermal reforming over nickel-based catalyst. JPower Sources 2008, 177:506-511.
    • (2008) JPower Sources , vol.177 , pp. 506-511
    • Wang, H.M.1
  • 56
    • 33745654566 scopus 로고    scopus 로고
    • Operation conditions optimization of hydrogen production by propane autothermal reforming for PEMFC application
    • Liu Z., Mao Z., Xu J., Hess-Mohr N., Schmidt V.M. Operation conditions optimization of hydrogen production by propane autothermal reforming for PEMFC application. Chin J Chem Eng 2006, 14:259-265.
    • (2006) Chin J Chem Eng , vol.14 , pp. 259-265
    • Liu, Z.1    Mao, Z.2    Xu, J.3    Hess-Mohr, N.4    Schmidt, V.M.5
  • 57
    • 84875163988 scopus 로고    scopus 로고
    • Acomparative study on energetic and exergetic assessment of hydrogen production from bioethanol via steam reforming, partial oxidation and auto-thermal reforming processes
    • Khila Z., Hajjaji N., Pons M.N., Renaudin V., Houas A. Acomparative study on energetic and exergetic assessment of hydrogen production from bioethanol via steam reforming, partial oxidation and auto-thermal reforming processes. Fuel Process Technol 2013, 112:19-27.
    • (2013) Fuel Process Technol , vol.112 , pp. 19-27
    • Khila, Z.1    Hajjaji, N.2    Pons, M.N.3    Renaudin, V.4    Houas, A.5
  • 58
    • 0035698169 scopus 로고    scopus 로고
    • Fuel processors for automotive fuel cell systems: a parametric analysis
    • Doss E.D., Kumar R., Ahluwalia R.K., Krumpelt M. Fuel processors for automotive fuel cell systems: a parametric analysis. JPower Sources 2001, 102:1-15.
    • (2001) JPower Sources , vol.102 , pp. 1-15
    • Doss, E.D.1    Kumar, R.2    Ahluwalia, R.K.3    Krumpelt, M.4
  • 59
    • 84883716916 scopus 로고    scopus 로고
    • Hydrogen production from aqueous-phase reforming of sorghum biomass: an application of the response surface methodology
    • Meryemoǧlu B., Hasanoǧlu A., Kaya B., Irmak S., Erbatur O. Hydrogen production from aqueous-phase reforming of sorghum biomass: an application of the response surface methodology. Renew Energy 2014, 62:535-541.
    • (2014) Renew Energy , vol.62 , pp. 535-541
    • Meryemoǧlu, B.1    Hasanoǧlu, A.2    Kaya, B.3    Irmak, S.4    Erbatur, O.5
  • 60
    • 79551572737 scopus 로고    scopus 로고
    • Design of experiments for statistical modeling and multi-response optimization of nickel electroplating process
    • Poroch-Seritan M., Gutt S., Gutt G., Cretescu I., Cojocaru C., Severin T. Design of experiments for statistical modeling and multi-response optimization of nickel electroplating process. Chem Eng Res Design 2011, 89:136-137.
    • (2011) Chem Eng Res Design , vol.89 , pp. 136-137
    • Poroch-Seritan, M.1    Gutt, S.2    Gutt, G.3    Cretescu, I.4    Cojocaru, C.5    Severin, T.6


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.