메뉴 건너뛰기




Volumn , Issue , 2013, Pages 1177-1182

Bearing fault classification based on Minimum Volume Ellipsoid feature extraction

Author keywords

[No Author keywords available]

Indexed keywords

EQUIPMENT TESTING;

EID: 84902248068     PISSN: None     EISSN: None     Source Type: Conference Proceeding    
DOI: 10.1109/CCA.2013.6662911     Document Type: Conference Paper
Times cited : (2)

References (25)
  • 1
    • 0037302970 scopus 로고    scopus 로고
    • Basic vibration signal processing for bearing fault detection
    • Feb
    • S.A. McInerny and Y. Dai, Basic Vibration Signal Processing for Bearing Fault Detection, IEEE Transactions on Education,vol. 44, no. 1 pp. 149156, Feb. 2003.
    • (2003) IEEE Transactions on Education , vol.44 , Issue.1 , pp. 149156
    • McInerny, S.A.1    Dai, Y.2
  • 2
    • 4344576021 scopus 로고    scopus 로고
    • Fault classification and fault signature production for rolling element bearings in electric machines
    • May/June
    • J. Stack, and T. G. Habetler, and R. G. Harley, Fault Classification and Fault Signature Production for Rolling Element Bearings in Electric Machines, IEEE Transactions on Industry Applications,vol. 40, no. 3 pp. 7357739, May/June 2004.
    • (2004) IEEE Transactions on Industry Applications , vol.40 , Issue.3 , pp. 7357739
    • Stack, J.1    Habetler, T.G.2    Harley, R.G.3
  • 3
    • 36348932651 scopus 로고    scopus 로고
    • Model-based control in the pulp and paper industry
    • August
    • M. Mercangoz and F. J. Doyle, Model-Based Control in the Pulp and Paper Industry, IEEE Control Systems Magazine,vol.26, no. 4 pp. 3039, August 2006.
    • (2006) IEEE Control Systems Magazine , vol.26 , Issue.4 , pp. 3039
    • Mercangoz, M.1    Doyle, F.J.2
  • 4
    • 34548035641 scopus 로고    scopus 로고
    • Rolling element bearings multi-fault classification based on the wavelet denoising and support vector machine
    • S. Abbasiona, and A. Rafsanjania, and A. Farshidianfarb, and N. Iranic, Rolling element bearings multi-fault classification based on the wavelet denoising and support vector machine, Mechanical Systems and Signal Processing,vol.21, pp. 29332945, 2007.
    • (2007) Mechanical Systems and Signal Processing , vol.21 , pp. 29332945
    • Abbasiona, S.1    Rafsanjania, A.2    Farshidianfarb, A.3    Iranic, N.4
  • 5
    • 84902281841 scopus 로고    scopus 로고
    • Induction motor bearing failure detection and diagnosis: Park and concordia transform
    • I. Y. nel and M. E. Benbouzid, Induction Motor Bearing Failure Detection and Diagnosis: Park and Concordia Transform, IEEE/ASME Transactions on Mechatronicsvol.13, no.2, 257262, 2008.
    • (2008) IEEE/ASME Transactions on Mechatronics , vol.13 , Issue.2 , pp. 257262
    • Nel, I.Y.1    Benbouzid, M.E.2
  • 6
    • 64149130713 scopus 로고    scopus 로고
    • Experimental diagnostics of ball bearings using statistical and spectral methods
    • T. Karacay and N. Akturk, Experimental Diagnostics of Ball Bearings using Statistical and Spectral Methods, Tribology International,vol.42, pp. 836843, 2009.
    • (2009) Tribology International , vol.42 , pp. 836843
    • Karacay, T.1    Akturk, N.2
  • 7
    • 0347526092 scopus 로고    scopus 로고
    • Artificial neural networks and support vector machines with genetic algorithm for bearing fault detection
    • B. Samanta, and K. R. Al-Balushi, and S. A. Al-Araimi, Artificial neural networks and support vector machines with genetic algorithm for bearing fault detection, Engineering Applications of Artificial Intelligence,vol.16, pp. 657665, 2003.
    • (2003) Engineering Applications of Artificial Intelligence , vol.16 , pp. 657665
    • Samanta, B.1    Al-Balushi, K.R.2    Al-Araimi, S.A.3
  • 9
    • 0037345899 scopus 로고    scopus 로고
    • Artificial neural network based fault diagnostics of rolling element bearings using timedomain features
    • May
    • B. Samanta, and K. R. Al-Balushi, Artificial neural network based fault diagnostics of rolling element bearings using timedomain features, Mechanical Sustem and Signal Processing,vol.17, no. 2 pp. 317328, May 2003.
    • (2003) Mechanical Sustem and Signal Processing , vol.17 , Issue.2 , pp. 317328
    • Samanta, B.1    Al-Balushi, K.R.2
  • 11
    • 67349287589 scopus 로고    scopus 로고
    • A novel fault diagnosis method of bearing based on improved fuzzy ARTMAP and modified distance discriminant technique
    • November
    • Z. Xu, and J. Xuan, and T. Shi, and B. Wu, and Y. Hu, A novel fault diagnosis method of bearing based on improved fuzzy ARTMAP and modified distance discriminant technique, Expert Syst. Appl,vol.36, pp. 1180111807,November, 2009.
    • (2009) Expert Syst. Appl , vol.36 , pp. 1180111807
    • Xu, Z.1    Xuan, J.2    Shi, T.3    Wu, B.4    Hu, Y.5
  • 12
    • 80052399458 scopus 로고    scopus 로고
    • A weighted multi-scale morphological gradient filter for rolling element bearing fault detection
    • B. Li, and P. L. Zhang, and Z. J. Wang, and S. S. Mi, and D. S. Liu, A weighted multi-scale morphological gradient filter for rolling element bearing fault detection, ISA Transactions,vol.50,pp. 599608, 2011.
    • (2011) ISA Transactions , vol.50 , pp. 599608
    • Li, B.1    Zhang, P.L.2    Wang, Z.J.3    Mi, S.S.4    Liu, D.S.5
  • 25
    • 27144463192 scopus 로고    scopus 로고
    • On comparing classifiers Pitfalls to avoid and a recommended approach
    • S. L. Salzberg, On comparing classifiers Pitfalls to avoid and a recommended approach, Data mining and knowledge discovery,vol.1, no. 3, pp. 317328, 1997.
    • (1997) Data Mining and Knowledge Discovery , vol.1 , Issue.3 , pp. 317328
    • Salzberg, S.L.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.