-
1
-
-
0041736718
-
An unconditionally convergent finite-difference scheme for the SIR model
-
10.1016/S0096-3003(02)00607-0 MR2008576 ZBL1026.92041
-
Piyawong W., Twizell E. H., Gumel A. B., An unconditionally convergent finite-difference scheme for the SIR model. Applied Mathematics and Computation 2003 146 2-3 611 625 10.1016/S0096-3003(02)00607-0 MR2008576 ZBL1026.92041
-
(2003)
Applied Mathematics and Computation
, vol.146
, Issue.2-3
, pp. 611-625
-
-
Piyawong, W.1
Twizell, E.H.2
Gumel, A.B.3
-
2
-
-
31244431623
-
Lyapunov functions and global stability for SIR, SIRS, and SIS epidemiological models
-
10.1016/S0893-9659(02)00069-1 MR1925920 ZBL1022.34044
-
Korobeinikov A., Wake G. C., Lyapunov functions and global stability for SIR, SIRS, and SIS epidemiological models. Applied Mathematics Letters 2002 15 8 955 960 10.1016/S0893-9659(02)00069-1 MR1925920 ZBL1022.34044
-
(2002)
Applied Mathematics Letters
, vol.15
, Issue.8
, pp. 955-960
-
-
Korobeinikov, A.1
Wake, G.C.2
-
3
-
-
0031167217
-
Convergence results in SIR epidemic models with varying population sizes
-
PII S0362546X96000351
-
Beretta E., Takeuchi Y., Convergence results in SIR epidemic models with varying population sizes. Nonlinear Analysis: Theory, Methods & Applications 1997 28 12 1909 1921 10.1016/S0362-546X(96)00035-1 MR1436361 ZBL0879.34054 (Pubitemid 127417735)
-
(1997)
Nonlinear Analysis, Theory, Methods and Applications
, vol.28
, Issue.12
, pp. 1909-1921
-
-
Beretta, E.1
Takeuchi, Y.2
-
4
-
-
0029190838
-
Global stability of an SIR epidemic model with time delays
-
10.1007/BF00169563 MR1331508 ZBL0811.92019
-
Beretta E., Takeuchi Y., Global stability of an SIR epidemic model with time delays. Journal of Mathematical Biology 1995 33 3 250 260 10.1007/BF00169563 MR1331508 ZBL0811.92019
-
(1995)
Journal of Mathematical Biology
, vol.33
, Issue.3
, pp. 250-260
-
-
Beretta, E.1
Takeuchi, Y.2
-
5
-
-
10644240707
-
Global stability of an SIR epidemic model with time delay
-
10.1016/j.aml.2003.11.005 MR2091848 ZBL1071.34082
-
Ma W., Song M., Takeuchi Y., Global stability of an SIR epidemic model with time delay. Applied Mathematics Letters 2004 17 10 1141 1145 10.1016/j.aml.2003.11.005 MR2091848 ZBL1071.34082
-
(2004)
Applied Mathematics Letters
, vol.17
, Issue.10
, pp. 1141-1145
-
-
Ma, W.1
Song, M.2
Takeuchi, Y.3
-
6
-
-
33846868827
-
The stability of an SIR epidemic model with time delays
-
Jin Z., Ma Z., The stability of an SIR epidemic model with time delays. Mathematical Biosciences and Engineering 2006 3 1 101 109 MR2192127 ZBL1089.92045 (Pubitemid 46227033)
-
(2006)
Mathematical Biosciences and Engineering
, vol.3
, Issue.1
, pp. 101-109
-
-
Jin, Z.1
Ma, Z.2
-
7
-
-
2942631566
-
Impulsive vaccination of sir epidemic models with nonlinear incidence rates
-
Advances in Mathematical Biology
-
Hui J., Chen L.-S., Impulsive vaccination of SIR epidemic models with nonlinear incidence rates. Discrete and Continuous Dynamical Systems B 2004 4 3 595 605 10.3934/dcdsb.2004.4.595 MR2073963 ZBL1100.92040 (Pubitemid 38782413)
-
(2004)
Discrete and Continuous Dynamical Systems - Series B
, vol.4
, Issue.3
, pp. 595-605
-
-
Hui, J.1
Chen, L.-S.2
-
8
-
-
39449119838
-
The dynamics of a new SIR epidemic model concerning pulse vaccination strategy
-
DOI 10.1016/j.amc.2007.07.083, PII S0096300307008041
-
Meng X., Chen L., The dynamics of a new SIR epidemic model concerning pulse vaccination strategy. Applied Mathematics and Computation 2008 197 2 582 597 10.1016/j.amc.2007.07.083 MR2400680 ZBL1131.92056 (Pubitemid 351273773)
-
(2008)
Applied Mathematics and Computation
, vol.197
, Issue.2
, pp. 582-597
-
-
Meng, X.1
Chen, L.2
-
9
-
-
18544380939
-
Complexity of an SIR epidemic dynamics model with impulsive vaccination control
-
DOI 10.1016/j.chaos.2005.01.021, PII S0960077905001049
-
Zeng G. Z., Chen L. S., Sun L. H., Complexity of an SIR epidemic dynamics model with impulsive vaccination control. Chaos, Solitons & Fractals 2005 26 2 495 505 10.1016/j.chaos.2005.01.021 MR2143963 ZBL1065.92050 (Pubitemid 40654969)
-
(2005)
Chaos, Solitons and Fractals
, vol.26
, Issue.2
, pp. 495-505
-
-
Zeng, G.Z.1
Chen, L.S.2
Sun, L.H.3
-
10
-
-
1242285222
-
Pulse vaccination strategy in SIR epidemic model
-
ZBL1025.92011
-
D'Onofrio A., Pulse vaccination strategy in SIR epidemic model. Mathematical and Computer Modelling 2002 13 15 26 ZBL1025.92011
-
(2002)
Mathematical and Computer Modelling
, vol.13
, pp. 15-26
-
-
D'Onofrio, A.1
-
11
-
-
33748891316
-
Global stability of an SIS epidemic model with time delays
-
MR2154287
-
Yuan S. L., Ma Z. E., Han M. A., Global stability of an SIS epidemic model with time delays. Acta Mathematica Scientia A 2005 25 3 349 356 MR2154287
-
(2005)
Acta Mathematica Scientia A
, vol.25
, Issue.3
, pp. 349-356
-
-
Yuan, S.L.1
Ma, Z.E.2
Han, M.A.3
-
12
-
-
33846885589
-
Persistence and Periodic Solution on a Nonautonomous SIS Model with Delays
-
DOI 10.1007/s10255-003-0093-3
-
Yuan S.-L., Ma Z.-E., Jin Z., Persistence and periodic solution on a nonautonomous SIS model with delays. Acta Mathematicae Applicatae Sinica 2003 19 1 167 176 10.1007/s10255-003-0093-3 MR2053784 (Pubitemid 36795526)
-
(2003)
Acta Mathematicae Applicatae Sinica English Series
, vol.19
, Issue.1
, pp. 167-176
-
-
Yuan, S.-l.1
Ma, Z.-E.2
Jin, Z.3
-
13
-
-
84896986112
-
Simultaneous reconstruction of evolutionary history and epidemiological dynamics from viral sequences with the birth-death SIR model
-
20131106 10.1098/rsif.2013.1106
-
Kühnert D., Stadler T., Vaughan T. G., Drummond A. J., Simultaneous reconstruction of evolutionary history and epidemiological dynamics from viral sequences with the birth-death SIR model. Journal of the Royal Society Interface 2014 11 94 20131106 10.1098/rsif.2013.1106
-
(2014)
Journal of the Royal Society Interface
, vol.11
, Issue.94
-
-
Kühnert, D.1
Stadler, T.2
Vaughan, T.G.3
Drummond, A.J.4
-
14
-
-
79955521824
-
Global dynamics and bifurcation in delayed SIR epidemic model
-
10.1016/j.nonrwa.2010.12.021 MR2801000 ZBL1235.34216
-
Kar T. K., Mondal P. K., Global dynamics and bifurcation in delayed SIR epidemic model. Nonlinear Analysis: Real World Applications 2011 12 4 2058 2068 10.1016/j.nonrwa.2010.12.021 MR2801000 ZBL1235.34216
-
(2011)
Nonlinear Analysis: Real World Applications
, vol.12
, Issue.4
, pp. 2058-2068
-
-
Kar, T.K.1
Mondal, P.K.2
-
15
-
-
79958771385
-
Global analysis on delay epidemiological dynamic models with nonlinear incidence
-
10.1007/s00285-010-0368-2 MR2806492 ZBL1230.92048
-
Huang G., Takeuchi Y., Global analysis on delay epidemiological dynamic models with nonlinear incidence. Journal of Mathematical Biology 2011 63 1 125 139 10.1007/s00285-010-0368-2 MR2806492 ZBL1230.92048
-
(2011)
Journal of Mathematical Biology
, vol.63
, Issue.1
, pp. 125-139
-
-
Huang, G.1
Takeuchi, Y.2
-
16
-
-
80955141925
-
On the global stability of SIS, SIR and SIRS epidemic models with standard incidence
-
2-s2.0-80955141925 10.1016/j.chaos.2011.09.002 ZBL06196108
-
Vargas-De-León C., On the global stability of SIS, SIR and SIRS epidemic models with standard incidence. Chaos, Solitons & Fractals 2011 44 12 1106 1110 2-s2.0-80955141925 10.1016/j.chaos.2011.09.002 ZBL06196108
-
(2011)
Chaos, Solitons & Fractals
, vol.44
, Issue.12
, pp. 1106-1110
-
-
Vargas-De-León, C.1
-
17
-
-
79953753536
-
Stability analysis and optimal control of an SIR epidemic model with vaccination
-
2-s2.0-79953753536 10.1016/j.biosystems.2011.02.001
-
Kar T. K., Batabyal A., Stability analysis and optimal control of an SIR epidemic model with vaccination. BioSystems 2011 104 2-3 127 135 2-s2.0-79953753536 10.1016/j.biosystems.2011.02.001
-
(2011)
BioSystems
, vol.104
, Issue.2-3
, pp. 127-135
-
-
Kar, T.K.1
Batabyal, A.2
-
18
-
-
84861580234
-
Analysis of SIR epidemic models with nonlinear incidence rate and treatment
-
10.1016/j.mbs.2012.03.010 MR2947079 ZBL1250.92031
-
Hu Z., Ma W., Ruan S., Analysis of SIR epidemic models with nonlinear incidence rate and treatment. Mathematical Biosciences 2012 238 1 12 20 10.1016/j.mbs.2012.03.010 MR2947079 ZBL1250.92031
-
(2012)
Mathematical Biosciences
, vol.238
, Issue.1
, pp. 12-20
-
-
Hu, Z.1
Ma, W.2
Ruan, S.3
-
19
-
-
67649224128
-
Analysis of a saturation incidence SVEIRS epidemic model with pulse and two time delays
-
10.1016/j.amc.2009.04.005 MR2541674 ZBL1168.92326
-
Song X., Jiang Y., Wei H., Analysis of a saturation incidence SVEIRS epidemic model with pulse and two time delays. Applied Mathematics and Computation 2009 214 2 381 390 10.1016/j.amc.2009.04.005 MR2541674 ZBL1168.92326
-
(2009)
Applied Mathematics and Computation
, vol.214
, Issue.2
, pp. 381-390
-
-
Song, X.1
Jiang, Y.2
Wei, H.3
-
20
-
-
43649100484
-
Global behavior and permanence of SIRS epidemic model with time delay
-
DOI 10.1016/j.nonrwa.2007.03.010, PII S1468121807000612
-
Zhang T., Teng Z., Global behavior and permanence of SIRS epidemic model with time delay. Nonlinear Analysis: Real World Applications 2008 9 4 1409 1424 10.1016/j.nonrwa.2007.03.010 MR2422552 ZBL1154.34390 (Pubitemid 351685787)
-
(2008)
Nonlinear Analysis: Real World Applications
, vol.9
, Issue.4
, pp. 1409-1424
-
-
Zhang, T.1
Teng, Z.2
-
21
-
-
0036222772
-
Global dynamics of an seir epidemic model with vertical transmission
-
PII S0036139999359860
-
Li M. Y., Smith H. L., Wang L., Global dynamics an SEIR epidemic model with vertical transmission. SIAM Journal on Applied Mathematics 2001 62 1 58 69 10.1137/S0036139999359860 MR1857535 ZBL0991.92029 (Pubitemid 33779898)
-
(2001)
SIAM Journal on Applied Mathematics
, vol.62
, Issue.1
, pp. 58-69
-
-
Li, M.Y.1
Smith, H.L.2
Wang, L.3
-
22
-
-
31244431921
-
Global behavior of an SEIRS epidemic model with time delays
-
DOI 10.1016/S0893-9659(01)00153-7, PII S0893965901001537
-
Wang W., Global behavior of an SEIRS epidemic model with time delays. Applied Mathematics Letters 2002 15 4 423 428 10.1016/S0893-9659(01)00153-7 MR1902274 ZBL1015.92033 (Pubitemid 34267662)
-
(2002)
Applied Mathematics Letters
, vol.15
, Issue.4
-
-
Wang, W.1
-
23
-
-
33748899666
-
Global stability of an sirs epidemic model with delays This work is supported by the National Sciences Foundation of China (10471040) and the Youth Science Foundations of Shanxi Province (20021003)
-
DOI 10.1016/S0252-9602(06)60051-9, PII S0252960206600519
-
Zhen J., Ma Z., Han M., Global stability of an SIRS epidemic model with delays. Acta Mathematica Scientia B 2006 26 2 291 306 10.1016/S0252-9602(06) 60051-9 MR2219381 ZBL1090.92044 (Pubitemid 44428314)
-
(2006)
Acta Mathematica Scientia
, vol.26
, Issue.2
, pp. 291-306
-
-
Zhen, J.1
Ma, Z.2
Han, M.3
-
24
-
-
18444376767
-
Global stability of a SEIR epidemic model with infectious force in latent, infected and immune period
-
DOI 10.1016/j.chaos.2004.11.062, PII S0960077905000147
-
Li G., Jin Z., Global stability of a SEIR epidemic model with infectious force in latent, infected and immune period. Chaos, Solitons & Fractals 2005 25 5 1177 1184 10.1016/j.chaos.2004.11.062 MR2144662 ZBL1065.92046 (Pubitemid 40643069)
-
(2005)
Chaos, Solitons and Fractals
, vol.25
, Issue.5
, pp. 1177-1184
-
-
Li, G.1
Jin, Z.2
-
25
-
-
0030318519
-
Analysis of an SEIRS epidemic model with two delays
-
10.1007/s002850050051 MR1478050 ZBL0865.92019
-
Cooke K. L., van den Driessche P., Analysis of an SEIRS epidemic model with two delays. Journal of Mathematical Biology 1996 35 2 240 260 10.1007/s002850050051 MR1478050 ZBL0865.92019
-
(1996)
Journal of Mathematical Biology
, vol.35
, Issue.2
, pp. 240-260
-
-
Cooke, K.L.1
Van Den Driessche, P.2
-
26
-
-
44649122225
-
The effects of pulse vaccination on SEIR model with two time delays
-
10.1016/j.amc.2007.12.019 MR2432603 ZBL1143.92024
-
Gao S., Teng Z., Xie D., The effects of pulse vaccination on SEIR model with two time delays. Applied Mathematics and Computation 2008 201 1-2 282 292 10.1016/j.amc.2007.12.019 MR2432603 ZBL1143.92024
-
(2008)
Applied Mathematics and Computation
, vol.201
, Issue.1-2
, pp. 282-292
-
-
Gao, S.1
Teng, Z.2
Xie, D.3
-
27
-
-
33847258383
-
Impulsive vaccination of an SEIRS model with time delay and varying total population size
-
DOI 10.1007/s11538-006-9149-x
-
Gao S., Chen L., Teng Z., Impulsive vaccination of an SEIRS model with time delay and varying total population size. Bulletin of Mathematical Biology 2007 69 2 731 745 2-s2.0-33847258383 10.1007/s11538-006-9149-x ZBL1139.92314 (Pubitemid 46327275)
-
(2007)
Bulletin of Mathematical Biology
, vol.69
, Issue.2
, pp. 731-745
-
-
Gao, S.1
Chen, L.2
Teng, Z.3
-
28
-
-
33947200296
-
Two profitless delays for the SEIRS epidemic disease model with nonlinear incidence and pulse vaccination
-
DOI 10.1016/j.amc.2006.07.124, PII S0096300306009623
-
Meng X., Chen L., Cheng H., Two profitless delays for the SEIRS epidemic disease model with nonlinear incidence and pulse vaccination. Applied Mathematics and Computation 2007 186 1 516 529 10.1016/j.amc.2006.07.124 MR2314511 ZBL1111.92049 (Pubitemid 46435636)
-
(2007)
Applied Mathematics and Computation
, vol.186
, Issue.1
, pp. 516-529
-
-
Meng, X.1
Chen, L.2
Cheng, H.3
-
29
-
-
40649109547
-
Pulse vaccination delayed SEIRS epidemic model with saturation incidence
-
DOI 10.1016/j.apm.2007.06.005, PII S0307904X07001242
-
Zhang T., Teng Z., Pulse vaccination delayed SEIRS epidemic model with saturation incidence. Applied Mathematical Modelling 2008 32 7 1403 1416 10.1016/j.apm.2007.06.005 MR2409386 ZBL1182.92064 (Pubitemid 351372905)
-
(2008)
Applied Mathematical Modelling
, vol.32
, Issue.7
, pp. 1403-1416
-
-
Zhang, T.1
Teng, Z.2
-
30
-
-
79957734288
-
Global analysis of a delayed epidemic dynamical system with pulse vaccination and nonlinear incidence rate
-
10.1016/j.apm.2011.03.044 MR2806673 ZBL1228.34102
-
Jiang Y., Mei L., Song X., Global analysis of a delayed epidemic dynamical system with pulse vaccination and nonlinear incidence rate. Applied Mathematical Modelling 2011 35 10 4865 4876 10.1016/j.apm.2011.03.044 MR2806673 ZBL1228.34102
-
(2011)
Applied Mathematical Modelling
, vol.35
, Issue.10
, pp. 4865-4876
-
-
Jiang, Y.1
Mei, L.2
Song, X.3
-
31
-
-
0003100558
-
Stability analysis for a vector disease model
-
10.1216/RMJ-1979-9-1-31 MR517971 ZBL0423.92029
-
Cooke K. L., Stability analysis for a vector disease model. The Rocky Mountain Journal of Mathematics 1979 9 1 31 42 10.1216/RMJ-1979-9-1-31 MR517971 ZBL0423.92029
-
(1979)
The Rocky Mountain Journal of Mathematics
, vol.9
, Issue.1
, pp. 31-42
-
-
Cooke, K.L.1
-
32
-
-
0343442479
-
Global asymptotic properties of a delay SIR epidemic model with finite incubation times
-
10.1016/S0362-546X(99)00138-8 MR1780445 ZBL0967.34070
-
Takeuchi Y., Ma W., Beretta E., Global asymptotic properties of a delay SIR epidemic model with finite incubation times. Nonlinear Analysis: Theory, Methods & Applications 2000 42 6 931 947 10.1016/S0362-546X(99)00138-8 MR1780445 ZBL0967.34070
-
(2000)
Nonlinear Analysis: Theory, Methods & Applications
, vol.42
, Issue.6
, pp. 931-947
-
-
Takeuchi, Y.1
Ma, W.2
Beretta, E.3
-
33
-
-
0023070210
-
Dynamical behavior of epidemiological models with nonlinear incidence rates
-
10.1007/BF00277162 MR908379 ZBL0621.92014
-
Liu W.-M., Hethcote H. W., Levin S. A., Dynamical behavior of epidemiological models with nonlinear incidence rates. Journal of Mathematical Biology 1987 25 4 359 380 10.1007/BF00277162 MR908379 ZBL0621.92014
-
(1987)
Journal of Mathematical Biology
, vol.25
, Issue.4
, pp. 359-380
-
-
Liu, W.-M.1
Hethcote, H.W.2
Levin, S.A.3
-
34
-
-
0022298258
-
Influence of nonlinear incidence rates upon the behavior of SIRS epidemiological models
-
10.1007/BF00276956
-
Liu W.-M., Levin S. A., Iwasa Y., Influence of nonlinear incidence rates upon the behavior of SIRS epidemiological models. Journal of Mathematical Biology 1986 23 2 187 240 10.1007/BF00276956
-
(1986)
Journal of Mathematical Biology
, vol.23
, Issue.2
, pp. 187-240
-
-
Liu, W.-M.1
Levin, S.A.2
Iwasa, Y.3
-
35
-
-
70350731589
-
A delay SIR epidemic model with pulse vaccination and incubation times
-
10.1016/j.nonrwa.2008.10.041 MR2570527 ZBL1184.92044
-
Meng X., Chen L., Wu B., A delay SIR epidemic model with pulse vaccination and incubation times. Nonlinear Analysis: Real World Applications 2010 11 1 88 98 10.1016/j.nonrwa.2008.10.041 MR2570527 ZBL1184.92044
-
(2010)
Nonlinear Analysis: Real World Applications
, vol.11
, Issue.1
, pp. 88-98
-
-
Meng, X.1
Chen, L.2
Wu, B.3
-
36
-
-
1842530704
-
One-dimensional measles dynamics
-
10.1016/S0096-3003(03)00554-X MR2050061 ZBL1047.92040
-
Al-Showaikh F. N. M., Twizell E. H., One-dimensional measles dynamics. Applied Mathematics and Computation 2004 152 1 169 194 10.1016/S0096-3003(03) 00554-X MR2050061 ZBL1047.92040
-
(2004)
Applied Mathematics and Computation
, vol.152
, Issue.1
, pp. 169-194
-
-
Al-Showaikh, F.N.M.1
Twizell, E.H.2
-
37
-
-
0030976773
-
Hopf bifurcation in epidemic models with a latent period and nonpermanent immunity
-
DOI 10.1016/S0895-7177(97)00009-5, PII S0895717797000095
-
Greenhalgh D., Hopf bifurcation in epidemic models with a latent period and nonpermanent immunity. Mathematical and Computer Modelling 1997 25 2 85 107 10.1016/S0895-7177(97)00009-5 MR1434405 ZBL0877.92023 (Pubitemid 27126605)
-
(1997)
Mathematical and Computer Modelling
, vol.25
, Issue.2
, pp. 85-107
-
-
Greenhalgh, D.1
-
38
-
-
1242264916
-
Mixed pulse vaccination strategy in epidemic model with realistically distributed infectious and latent times
-
10.1016/S0096-3003(03)00331-X MR2037959 ZBL1043.92033
-
d'Onofrio A., Mixed pulse vaccination strategy in epidemic model with realistically distributed infectious and latent times. Applied Mathematics and Computation 2004 151 1 181 187 10.1016/S0096-3003(03)00331-X MR2037959 ZBL1043.92033
-
(2004)
Applied Mathematics and Computation
, vol.151
, Issue.1
, pp. 181-187
-
-
D'Onofrio, A.1
-
40
-
-
0003733083
-
-
New York, NY, USA John Wiley & Sons
-
Bainov D., Simeonov P., System with Impulsive Effect: Stability, Theory and Applications 1989 New York, NY, USA John Wiley & Sons
-
(1989)
System with Impulsive Effect: Stability, Theory and Applications
-
-
Bainov, D.1
Simeonov, P.2
-
42
-
-
79953025432
-
The dynamics of a high-dimensional delayed pest management model with impulsive pesticide input and harvesting prey at different fixed moments
-
10.1007/s11071-010-9840-1 MR2782953 ZBL1280.34078
-
Zhang T., Meng X., Song Y., The dynamics of a high-dimensional delayed pest management model with impulsive pesticide input and harvesting prey at different fixed moments. Nonlinear Dynamics 2011 64 1-2 1 12 10.1007/s11071-010-9840-1 MR2782953 ZBL1280.34078
-
(2011)
Nonlinear Dynamics
, vol.64
, Issue.1-2
, pp. 1-12
-
-
Zhang, T.1
Meng, X.2
Song, Y.3
|