-
1
-
-
28844477796
-
Quantum Spin hall effect in graphene
-
DOI 10.1103/PhysRevLett.95.226801, 226801
-
C. L. Kane and E. J. Mele, Phys. Rev. Lett. 95, 226801 (2005). PRLTAO 0031-9007 10.1103/PhysRevLett.95.226801 (Pubitemid 41776999)
-
(2005)
Physical Review Letters
, vol.95
, Issue.22
, pp. 1-4
-
-
Kane, C.L.1
Mele, E.J.2
-
2
-
-
33845708953
-
Quantum spin hall effect and topological phase transition in HgTe quantum wells
-
DOI 10.1126/science.1133734
-
B. A. Bernevig, T. L. Hughes, and S. C. Zhang, Science 314, 1757 (2006). SCIEAS 0036-8075 10.1126/science.1133734 (Pubitemid 44969083)
-
(2006)
Science
, vol.314
, Issue.5806
, pp. 1757-1761
-
-
Bernevig, B.A.1
Hughes, T.L.2
Zhang, S.-C.3
-
3
-
-
38949129028
-
Quantum spin hall insulator state in HgTe quantum wells
-
DOI 10.1126/science.1148047
-
M. König, S. Wiedmann, C. Brüne, A. Roth, H. Buhmann, L. W. Molenkamp, X.-L. Qi, and S.-C. Zhang, Science 318, 766 (2007). SCIEAS 0036-8075 10.1126/science.1148047 (Pubitemid 351411764)
-
(2007)
Science
, vol.318
, Issue.5851
, pp. 766-770
-
-
Konig, M.1
Wiedmann, S.2
Brune, C.3
Roth, A.4
Buhmann, H.5
Molenkamp, L.W.6
Qi, X.-L.7
Zhang, S.-C.8
-
4
-
-
51249193030
-
-
NUCIAD 0029-6341 10.1007/BF02751483
-
J. Friedel, Nuovo Cimento Suppl. 7, 287 (1958). NUCIAD 0029-6341 10.1007/BF02751483
-
(1958)
Nuovo Cimento Suppl.
, vol.7
, pp. 287
-
-
Friedel, J.1
-
5
-
-
34548452627
-
-
PRBMDO 1098-0121 10.1103/PhysRevB.76.075131
-
G. G. Guzman-Verri and L. C. Lew Yan Voon, Phys. Rev. B 76, 075131 (2007). PRBMDO 1098-0121 10.1103/PhysRevB.76.075131
-
(2007)
Phys. Rev. B
, vol.76
, pp. 075131
-
-
Guzman-Verri, G.G.1
Lew Yan Voon, L.C.2
-
6
-
-
67249122406
-
-
PRLTAO 0031-9007 10.1103/PhysRevLett.102.236804
-
S. Cahangirov, M. Topsakal, E. Aktürk, H. Åahin, and S. Ciraci, Phys. Rev. Lett. 102, 236804 (2009). PRLTAO 0031-9007 10.1103/PhysRevLett.102.236804
-
(2009)
Phys. Rev. Lett.
, vol.102
, pp. 236804
-
-
Cahangirov, S.1
Topsakal, M.2
Aktürk, E.3
Åahin, H.4
Ciraci, S.5
-
7
-
-
84902171557
-
-
Because of the similarity between the germanene and the silicene, for the remainder of this Rapid Communication, we will not mention the germanene unless it is necessary.
-
Because of the similarity between the germanene and the silicene, for the remainder of this Rapid Communication, we will not mention the germanene unless it is necessary.
-
-
-
-
8
-
-
84864475146
-
-
PRLTAO 0031-9007 10.1103/PhysRevLett.109.055502
-
M. Ezawa, Phys. Rev. Lett. 109, 055502 (2012). PRLTAO 0031-9007 10.1103/PhysRevLett.109.055502
-
(2012)
Phys. Rev. Lett.
, vol.109
, pp. 055502
-
-
Ezawa, M.1
-
9
-
-
84874585234
-
-
2041-1723 10.1038/ncomms2525
-
W. F. Tsai, C. Y. Huang, T. R. Chang, H. Lin, H. T. Jeng, and A. Bansil, Nat. Commun. 4, 1500 (2013). 2041-1723 10.1038/ncomms2525
-
(2013)
Nat. Commun.
, vol.4
, pp. 1500
-
-
Tsai, W.F.1
Huang, C.Y.2
Chang, T.R.3
Lin, H.4
Jeng, H.T.5
Bansil, A.6
-
10
-
-
84872029909
-
-
PRLTAO 0031-9007 10.1103/PhysRevLett.110.016806
-
H. Z. Lu, W. Yao, D. Xiao, and S. Q. Shen, Phys. Rev. Lett. 110, 016806 (2013). PRLTAO 0031-9007 10.1103/PhysRevLett.110.016806
-
(2013)
Phys. Rev. Lett.
, vol.110
, pp. 016806
-
-
Lu, H.Z.1
Yao, W.2
Xiao, D.3
Shen, S.Q.4
-
11
-
-
84896337773
-
-
PRLTAO 0031-9007 10.1103/PhysRevLett.112.106802
-
H. Pan, Z. Li, C.-C. Liu, G. Zhu, Z. Qiao, and Y. Yao, Phys. Rev. Lett. 112, 106802 (2014). PRLTAO 0031-9007 10.1103/PhysRevLett.112.106802
-
(2014)
Phys. Rev. Lett.
, vol.112
, pp. 106802
-
-
Pan, H.1
Li, Z.2
Liu, C.-C.3
Zhu, G.4
Qiao, Z.5
Yao, Y.6
-
12
-
-
84881494505
-
-
PRLTAO 0031-9007 10.1103/PhysRevLett.111.066804
-
F. Liu, C.-C. Liu, K. Wu, F. Yang, and Y. Yao, Phys. Rev. Lett. 111, 066804 (2013). PRLTAO 0031-9007 10.1103/PhysRevLett.111.066804
-
(2013)
Phys. Rev. Lett.
, vol.111
, pp. 066804
-
-
Liu, F.1
Liu, C.-C.2
Wu, K.3
Yang, F.4
Yao, Y.5
-
13
-
-
84890533143
-
-
EULEEJ 0295-5075 10.1209/0295-5075/104/36001
-
W. Wan, Y. Ge, F. Yang, and Y. Yao, Europhys. Lett. 104, 36001 (2013). EULEEJ 0295-5075 10.1209/0295-5075/104/36001
-
(2013)
Europhys. Lett.
, vol.104
, pp. 36001
-
-
Wan, W.1
Ge, Y.2
Yang, F.3
Yao, Y.4
-
15
-
-
80051498457
-
-
PRLTAO 0031-9007 10.1103/PhysRevLett.107.076802
-
C.-C. Liu, W. X. Feng, and Y. G. Yao, Phys. Rev. Lett. 107, 076802 (2011). PRLTAO 0031-9007 10.1103/PhysRevLett.107.076802
-
(2011)
Phys. Rev. Lett.
, vol.107
, pp. 076802
-
-
Liu, C.-C.1
Feng, W.X.2
Yao, Y.G.3
-
16
-
-
84864588398
-
-
PRLTAO 0031-9007 10.1103/PhysRevLett.109.056804
-
L. Chen, C.-C. Liu, B. Feng, X. He, P. Cheng, Z. Ding, S. Meng, Y. Yao, and K. Wu, Phys. Rev. Lett. 109, 056804 (2012). PRLTAO 0031-9007 10.1103/PhysRevLett.109.056804
-
(2012)
Phys. Rev. Lett.
, vol.109
, pp. 056804
-
-
Chen, L.1
Liu, C.-C.2
Feng, B.3
He, X.4
Cheng, P.5
Ding, Z.6
Meng, S.7
Yao, Y.8
Wu, K.9
-
17
-
-
84859790102
-
-
PRLTAO 0031-9007 10.1103/PhysRevLett.108.155501
-
P. Vogt, P. De Padova, C. Quaresima, J. Avila, E. Frantzeskakis, M. C. Asensio, A. Resta, B. Ealet, and G. Le Lay, Phys. Rev. Lett. 108, 155501 (2012). PRLTAO 0031-9007 10.1103/PhysRevLett.108.155501
-
(2012)
Phys. Rev. Lett.
, vol.108
, pp. 155501
-
-
Vogt, P.1
De Padova, P.2
Quaresima, C.3
Avila, J.4
Frantzeskakis, E.5
Asensio, M.C.6
Resta, A.7
Ealet, B.8
Le Lay, G.9
-
18
-
-
84862189529
-
-
PRLTAO 0031-9007 10.1103/PhysRevLett.108.245501
-
A. Fleurence, R. Friedlein, T. Ozaki, H. Kawai, Y. Wang, and Y. Yamada-Takamura, Phys. Rev. Lett. 108, 245501 (2012). PRLTAO 0031-9007 10.1103/PhysRevLett.108.245501
-
(2012)
Phys. Rev. Lett.
, vol.108
, pp. 245501
-
-
Fleurence, A.1
Friedlein, R.2
Ozaki, T.3
Kawai, H.4
Wang, Y.5
Yamada-Takamura, Y.6
-
19
-
-
84873689451
-
-
NALEFD 1530-6984 10.1021/nl304347w
-
L. Meng, Y. Wang, L. Zhang, S. Du, R. Wu, L. Li, Y. Zhang, G. Li, H. Zhou, W. A. Hofer, and H.-J. Gao, Nano Lett. 13, 685 (2013). NALEFD 1530-6984 10.1021/nl304347w
-
(2013)
Nano Lett.
, vol.13
, pp. 685
-
-
Meng, L.1
Wang, Y.2
Zhang, L.3
Du, S.4
Wu, R.5
Li, L.6
Zhang, Y.7
Li, G.8
Zhou, H.9
Hofer, W.A.10
Gao, H.-J.11
-
20
-
-
84879966936
-
-
PRBMDO 1098-0121 10.1103/PhysRevB.87.245430
-
Y. P. Wang and H. P. Cheng, Phys. Rev. B 87, 245430 (2013). PRBMDO 1098-0121 10.1103/PhysRevB.87.245430
-
(2013)
Phys. Rev. B
, vol.87
, pp. 245430
-
-
Wang, Y.P.1
Cheng, H.P.2
-
21
-
-
82655178877
-
-
PRBMDO 1098-0121 10.1103/PhysRevB.84.195430
-
C. C. Liu, H. Jiang, and Y. G. Yao, Phys. Rev. B 84, 195430 (2011). PRBMDO 1098-0121 10.1103/PhysRevB.84.195430
-
(2011)
Phys. Rev. B
, vol.84
, pp. 195430
-
-
Liu, C.C.1
Jiang, H.2
Yao, Y.G.3
-
22
-
-
84902157845
-
-
The effective dielectric constant (Equation presented) is the average screening contribution of any dielectrics above (Equation presented) and below (Equation presented) the sample. The different values of (Equation presented) do not modify the qualitative behavior.
-
The effective dielectric constant (Equation presented) is the average screening contribution of any dielectrics above (Equation presented) and below (Equation presented) the sample. The different values of (Equation presented) do not modify the qualitative behavior.
-
-
-
-
23
-
-
33747181498
-
-
PRBMDO 0163-1829 10.1103/PhysRevB.34.979
-
K. W.-K. Shung, Phys. Rev. B 34, 979 (1986). PRBMDO 0163-1829 10.1103/PhysRevB.34.979
-
(1986)
Phys. Rev. B
, vol.34
, pp. 979
-
-
Shung, K.W.-K.1
-
24
-
-
4243643733
-
-
PRLTAO 0031-9007 10.1103/PhysRevLett.18.546
-
F. Stern, Phys. Rev. Lett. 18, 546 (1967). PRLTAO 0031-9007 10.1103/PhysRevLett.18.546
-
(1967)
Phys. Rev. Lett.
, vol.18
, pp. 546
-
-
Stern, F.1
-
25
-
-
33845532235
-
Dynamical polarization of graphene at finite doping
-
DOI 10.1088/1367-2630/8/12/318, PII S1367263006355607
-
B. Wunsch, T. Stauber, F. Sols, and F. Guinea, New J. Phys. 8, 318 (2006). NJOPFM 1367-2630 10.1088/1367-2630/8/12/318 (Pubitemid 44927392)
-
(2006)
New Journal of Physics
, vol.8
, pp. 318
-
-
Wunsch, B.1
Stauber, T.2
Sols, F.3
Guinea, F.4
-
26
-
-
34347363039
-
-
PRBMDO 1098-0121 10.1103/PhysRevB.75.205418
-
E. H. Hwang and S. Das Sarma, Phys. Rev. B 75, 205418 (2007). PRBMDO 1098-0121 10.1103/PhysRevB.75.205418
-
(2007)
Phys. Rev. B
, vol.75
, pp. 205418
-
-
Hwang, E.H.1
Das Sarma, S.2
-
27
-
-
40949151918
-
-
PRBMDO 1098-0121 10.1103/PhysRevB.77.081411
-
M. Polini, R. Asgari, G. Borghi, Y. Barlas, T. Pereg-Barnea, and A. H. MacDonald, Phys. Rev. B 77, 081411 (2008). PRBMDO 1098-0121 10.1103/PhysRevB.77. 081411
-
(2008)
Phys. Rev. B
, vol.77
, pp. 081411
-
-
Polini, M.1
Asgari, R.2
Borghi, G.3
Barlas, Y.4
Pereg-Barnea, T.5
Macdonald, A.H.6
-
28
-
-
33846359365
-
-
PRBMDO 1098-0121 10.1103/PhysRevB.75.033408
-
X. F. Wang and T. Chakraborty, Phys. Rev. B 75, 033408 (2007). PRBMDO 1098-0121 10.1103/PhysRevB.75.033408
-
(2007)
Phys. Rev. B
, vol.75
, pp. 033408
-
-
Wang, X.F.1
Chakraborty, T.2
-
29
-
-
63649124961
-
-
JCOMEL 0953-8984 10.1088/0953-8984/21/2/025506
-
P. K. Pyatkovskiy, J. Phys.: Condens. Matter 21, 025506 (2009). JCOMEL 0953-8984 10.1088/0953-8984/21/2/025506
-
(2009)
J. Phys.: Condens. Matter
, vol.21
, pp. 025506
-
-
Pyatkovskiy, P.K.1
-
30
-
-
84870155100
-
-
PRBMDO 1098-0121 10.1103/PhysRevB.86.195424
-
A. Scholz, T. Stauber, and J. Schliemann, Phys. Rev. B 86, 195424 (2012). PRBMDO 1098-0121 10.1103/PhysRevB.86.195424
-
(2012)
Phys. Rev. B
, vol.86
, pp. 195424
-
-
Scholz, A.1
Stauber, T.2
Schliemann, J.3
-
32
-
-
84902145689
-
-
See Supplemental Material at for a detailed derivation of the oscillatory part of the screened potential.
-
See Supplemental Material at http://link.aps.org/supplemental/10.1103/ PhysRevB.89.201411 for a detailed derivation of the oscillatory part of the screened potential.
-
-
-
-
34
-
-
84902171346
-
-
In our numerical calculation, we take (Equation presented), (Equation presented), and (Equation presented).
-
In our numerical calculation, we take (Equation presented), (Equation presented), and (Equation presented).
-
-
-
-
35
-
-
84886995922
-
-
1936-0851 10.1021/nn403661h
-
B. Feng, H. Li, C.-C. Liu, T.-N. Shao, P. Cheng, Y. Yao, S. Meng, L. Chen, and K. Wu, ACS Nano 7, 9049 (2013). 1936-0851 10.1021/nn403661h
-
(2013)
ACS Nano
, vol.7
, pp. 9049
-
-
Feng, B.1
Li, H.2
Liu, C.-C.3
Shao, T.-N.4
Cheng, P.5
Yao, Y.6
Meng, S.7
Chen, L.8
Wu, K.9
-
37
-
-
80755159152
-
-
NALEFD 1530-6984 10.1021/nl202362d
-
Z. Fei, G. O. Andreev, W. Bao, L. M. Zhang, A. S. McLeod, C. Wang, M. K. Stewart, Z. Zhao, G. Dominguez, M. Thiemens, M. M. Fogler, M. J. Tauber, A. H. Castro-Neto, C. N. Lau, F. Keilmann, and D. N. Basov, Nano Lett. 11, 4701 (2011). NALEFD 1530-6984 10.1021/nl202362d
-
(2011)
Nano Lett.
, vol.11
, pp. 4701
-
-
Fei, Z.1
Andreev, G.O.2
Bao, W.3
Zhang, L.M.4
McLeod, A.S.5
Wang, C.6
Stewart, M.K.7
Zhao, Z.8
Dominguez, G.9
Thiemens, M.10
Fogler, M.M.11
Tauber, M.J.12
Castro-Neto, A.H.13
Lau, C.N.14
Keilmann, F.15
Basov, D.N.16
-
38
-
-
77953078917
-
-
SCIEAS 0036-8075 10.1126/science.1186489
-
A. Bostwick, F. Speck, T. Seyller, K. Hom, M. Polini, R. Asgari, A. H. MacDonald, and E. Rotenberg, Science 328, 999 (2010). SCIEAS 0036-8075 10.1126/science.1186489
-
(2010)
Science
, vol.328
, pp. 999
-
-
Bostwick, A.1
Speck, F.2
Seyller, T.3
Hom, K.4
Polini, M.5
Asgari, R.6
Macdonald, A.H.7
Rotenberg, E.8
-
39
-
-
84902153034
-
-
In our simulations, the UPM's frequency is in the order of 10-100 meV, and within this region, one simple calculation within classical electromagnetic theory gives the same order amplitude in the absorption resonance of germanene compared with the background spectra of the Ag substrate. Also, when the absorption peak occurs at larger than 50 meV, the plasmon resonance would not be damped by the Ag substrate due to the small relaxation time of Ag (50 fs corresponds to 12 meV). Furthermore, usually the energies of the surface and bulk plasmon resonances of the metallic substrate lie in the order 1 eV (Ag is 3 eV while Au is (Equation presented) eV), and they are far away from that of germanene, with the result that the interference between the plasmon resonances of the substrate and germanene is nearly impossible. All three factors make the plasmon resonances of germanene observable in experiments, even in an Ag substrate.
-
In our simulations, the UPM's frequency is in the order of 10-100 meV, and within this region, one simple calculation within classical electromagnetic theory gives the same order amplitude in the absorption resonance of germanene compared with the background spectra of the Ag substrate. Also, when the absorption peak occurs at larger than 50 meV, the plasmon resonance would not be damped by the Ag substrate due to the small relaxation time of Ag (50 fs corresponds to 12 meV). Furthermore, usually the energies of the surface and bulk plasmon resonances of the metallic substrate lie in the order 1 eV (Ag is 3 eV while Au is (Equation presented) eV), and they are far away from that of germanene, with the result that the interference between the plasmon resonances of the substrate and germanene is nearly impossible. All three factors make the plasmon resonances of germanene observable in experiments, even in an Ag substrate.
-
-
-
-
40
-
-
84900513371
-
-
10.1103/PhysRevB.89.195410
-
C. J. Tabert and E. J. Nicol, Phys. Rev. B 89, 195410 (2014). 10.1103/PhysRevB.89.195410
-
(2014)
Phys. Rev. B
, vol.89
, pp. 195410
-
-
Tabert, C.J.1
Nicol, E.J.2
|