메뉴 건너뛰기




Volumn 83, Issue , 2014, Pages 51-77

Topological regulation of lipid balance in cells

Author keywords

lipid synthesis; lipid Transport proteins; membrane contact sites; membrane identity; phosphatidylinositol phosphate; sterol

Indexed keywords

CARRIER PROTEIN; LIPID; LIPID TRANSPORT PROTEIN; STEROL; UNCLASSIFIED DRUG; PHOSPHOLIPID;

EID: 84902137293     PISSN: 00664154     EISSN: 15454509     Source Type: Book Series    
DOI: 10.1146/annurev-biochem-060713-035307     Document Type: Review
Times cited : (70)

References (177)
  • 1
    • 84869040414 scopus 로고    scopus 로고
    • Curvature, lipid packing, and electrostatics of membrane organelles: Defining cellular territories in determining specificity
    • Bigay J, Antonny B. 2012. Curvature, lipid packing, and electrostatics of membrane organelles: defining cellular territories in determining specificity. Dev. Cell 23:886-95
    • (2012) Dev. Cell , vol.23 , pp. 886-895
    • Bigay, J.1    Antonny, B.2
  • 2
    • 77956813485 scopus 로고    scopus 로고
    • Subcellular organelle lipidomics in TLR-4- activated macrophages
    • Andreyev AY, Fahy E, Guan Z, Kelly S, Li X, et al. 2010. Subcellular organelle lipidomics in TLR-4- activated macrophages. J. Lipid Res. 51:2785-97
    • (2010) J. Lipid Res , vol.51 , pp. 2785-2797
    • Andreyev, A.Y.1    Fahy, E.2    Guan, Z.3    Kelly, S.4    Li, X.5
  • 3
    • 0032898199 scopus 로고    scopus 로고
    • Systematic analysis of yeast strains with possible defects in lipid metabolism
    • Daum G, Tuller G, Nemec T, Hrastnik C, Balliano G, et al. 1999. Systematic analysis of yeast strains with possible defects in lipid metabolism. Yeast 15:601-14
    • (1999) Yeast , vol.15 , pp. 601-614
    • Daum, G.1    Tuller, G.2    Nemec, T.3    Hrastnik, C.4    Balliano, G.5
  • 5
    • 0034012788 scopus 로고    scopus 로고
    • The phosphatidylcholine to phosphatidylethanolamine ratio of Saccharomyces cerevisiae varies with the growth phase
    • Janssen MJ, Koorengevel MC, de Kruijff B, de Kroon AI. 2000. The phosphatidylcholine to phosphatidylethanolamine ratio of Saccharomyces cerevisiae varies with the growth phase. Yeast 16:641-50
    • (2000) Yeast , vol.16 , pp. 641-650
    • Janssen, M.J.1    Koorengevel, M.C.2    De Kruijff, B.3    De Kroon, A.I.4
  • 7
    • 52049117134 scopus 로고    scopus 로고
    • Mass spectrometric analysis of lipid species of human circulating blood cells
    • Leidl K, Liebisch G, Richter D, Schmitz G. 2008. Mass spectrometric analysis of lipid species of human circulating blood cells. Biochim. Biophys. Acta 1781:655-64
    • (2008) Biochim. Biophys. Acta , vol.1781 , pp. 655-664
    • Leidl, K.1    Liebisch, G.2    Richter, D.3    Schmitz, G.4
  • 9
    • 10744230720 scopus 로고    scopus 로고
    • Phosphoinositide profiling in complex lipid mixtures using electrospray ionization mass spectrometry
    • Wenk MR, Lucast L, Di Paolo G, Romanelli AJ, Suchy SF, et al. 2003. Phosphoinositide profiling in complex lipid mixtures using electrospray ionization mass spectrometry. Nat. Biotechnol. 21:813-17
    • (2003) Nat. Biotechnol , vol.21 , pp. 813-817
    • Wenk, M.R.1    Lucast, L.2    Di Paolo, G.3    Romanelli, A.J.4    Suchy, S.F.5
  • 10
    • 31944436780 scopus 로고    scopus 로고
    • Depletion of phosphatidylcholine in yeast induces shortening and increased saturation of the lipid acyl chains: Evidence for regulation of intrinsic membrane curvature in a eukaryote
    • Boumann HA, Gubbens J, Koorengevel MC,Oh CS, Martin CE, et al. 2006. Depletion of phosphatidylcholine in yeast induces shortening and increased saturation of the lipid acyl chains: evidence for regulation of intrinsic membrane curvature in a eukaryote. Mol. Biol. Cell 17:1006-17
    • (2006) Mol. Biol. Cell , vol.17 , pp. 1006-1017
    • Boumann, H.A.1    Gubbens, J.2    Koorengevel, M.C.3    Oh, C.S.4    Martin, C.E.5
  • 12
    • 33744472183 scopus 로고    scopus 로고
    • Mass spectrometry-based profiling of phospholipids and sphingolipids in extracts from Saccharomyces cerevisiae
    • Guan XL, Wenk MR. 2006. Mass spectrometry-based profiling of phospholipids and sphingolipids in extracts from Saccharomyces cerevisiae. Yeast 23:465-77
    • (2006) Yeast , vol.23 , pp. 465-477
    • Guan, X.L.1    Wenk, M.R.2
  • 13
    • 0027231368 scopus 로고
    • Sterol composition of yeast organelle membranes and subcellular distribution of enzymes involved in sterol metabolism
    • Zinser E, Paltauf F, Daum G. 1993. Sterol composition of yeast organelle membranes and subcellular distribution of enzymes involved in sterol metabolism. J. Bacteriol. 175:2853-58
    • (1993) J. Bacteriol , vol.175 , pp. 2853-2858
    • Zinser, E.1    Paltauf, F.2    Daum, G.3
  • 14
    • 0032816939 scopus 로고    scopus 로고
    • Condensed complexes of cholesterol and phospholipids
    • Radhakrishnan A, McConnell HM. 1999. Condensed complexes of cholesterol and phospholipids. Biophys. J. 77:1507-17
    • (1999) Biophys. J , vol.77 , pp. 1507-1517
    • Radhakrishnan, A.1    McConnell, H.M.2
  • 15
    • 0033065591 scopus 로고    scopus 로고
    • A microscopic interaction model of maximum solubility of cholesterol in lipid bilayers
    • Huang J, Feigenson GW. 1999. A microscopic interaction model of maximum solubility of cholesterol in lipid bilayers. Biophys. J. 76:2142-57
    • (1999) Biophys. J , vol.76 , pp. 2142-2157
    • Huang, J.1    Feigenson, G.W.2
  • 16
    • 34248365632 scopus 로고    scopus 로고
    • Assess the nature of cholesterol-lipid interactions through the chemical potential of cholesterol in phosphatidylcholine bilayers
    • Ali MR, Cheng KH, Huang J. 2007. Assess the nature of cholesterol-lipid interactions through the chemical potential of cholesterol in phosphatidylcholine bilayers. Proc. Natl. Acad. Sci. USA 104:5372-77
    • (2007) Proc. Natl. Acad. Sci. USA , vol.104 , pp. 5372-5377
    • Ali, M.R.1    Cheng, K.H.2    Huang, J.3
  • 17
    • 0034789931 scopus 로고    scopus 로고
    • The organizing potential of sphingolipids in intracellular membrane transport
    • Holthuis JC, Pomorski T, Raggers RJ, Sprong H, Van Meer G. 2001. The organizing potential of sphingolipids in intracellular membrane transport. Physiol. Rev. 81:1689-723
    • (2001) Physiol. Rev , vol.81 , pp. 1689-1723
    • Holthuis, J.C.1    Pomorski, T.2    Raggers, R.J.3    Sprong, H.4    Van Meer, G.5
  • 18
    • 74849118341 scopus 로고    scopus 로고
    • Lipid rafts as a membrane-organizing principle
    • Lingwood D, Simons K. 2010. Lipid rafts as a membrane-organizing principle. Science 327:46-50
    • (2010) Science , vol.327 , pp. 46-50
    • Lingwood, D.1    Simons, K.2
  • 19
    • 0344585437 scopus 로고    scopus 로고
    • Lipid rafts: Elusive or illusive?
    • Munro S. 2003. Lipid rafts: elusive or illusive? Cell 115:377-88
    • (2003) Cell , vol.115 , pp. 377-388
    • Munro, S.1
  • 20
    • 0032848506 scopus 로고    scopus 로고
    • Lipid composition of subcellular membranes of an FY1679-derived haploid yeast wild-Type strain grown on different carbon sources
    • Tuller G, Nemec T, Hrastnik C, Daum G. 1999. Lipid composition of subcellular membranes of an FY1679-derived haploid yeast wild-Type strain grown on different carbon sources. Yeast 15:1555-64
    • (1999) Yeast , vol.15 , pp. 1555-1564
    • Tuller, G.1    Nemec, T.2    Hrastnik, C.3    Daum, G.4
  • 21
    • 0026082909 scopus 로고
    • Phospholipid synthesis and lipid composition of subcellular membranes in the unicellular eukaryote Saccharomyces cerevisiae
    • Zinser E, Sperka-GottliebCD, Fasch EV, Kohlwein SD, Paltauf F,DaumG. 1991. Phospholipid synthesis and lipid composition of subcellular membranes in the unicellular eukaryote Saccharomyces cerevisiae. J. Bacteriol. 173:2026-34
    • (1991) J. Bacteriol , vol.173 , pp. 2026-2034
    • Zinser, E.1    Sperka-Gottlieb, C.D.2    Fasch, E.V.3    Kohlwein, S.D.4    Paltauf, F.5    Daum, G.6
  • 22
    • 22144463880 scopus 로고    scopus 로고
    • Metabolism and functions of phosphatidylserine
    • Vance JE, Steenbergen R. 2005. Metabolism and functions of phosphatidylserine. Prog. Lipid Res. 44:207-34
    • (2005) Prog. Lipid Res , vol.44 , pp. 207-234
    • Vance, J.E.1    Steenbergen, R.2
  • 23
    • 0345363228 scopus 로고    scopus 로고
    • Electrospray ionization tandem mass spectrometry (ESI-MS/MS) analysis of the lipid molecular species composition of yeast subcellular membranes reveals acyl chain-based sorting/remodeling of distinct molecular species en route to the plasma membrane
    • Schneiter R, Brugger B, Sandhoff R, Zellnig G, Leber A, et al. 1999. Electrospray ionization tandem mass spectrometry (ESI-MS/MS) analysis of the lipid molecular species composition of yeast subcellular membranes reveals acyl chain-based sorting/remodeling of distinct molecular species en route to the plasma membrane. J. Cell Biol. 146:741-54
    • (1999) J. Cell Biol , vol.146 , pp. 741-754
    • Schneiter, R.1    Brugger, B.2    Sandhoff, R.3    Zellnig, G.4    Leber, A.5
  • 24
    • 56449110891 scopus 로고    scopus 로고
    • Switch-like control of SREBP-2 transport triggered by small changes in ER cholesterol: A delicate balance
    • Radhakrishnan A, Goldstein JL, McDonald JG, Brown MS. 2008. Switch-like control of SREBP-2 transport triggered by small changes in ER cholesterol: A delicate balance. Cell Metab. 8:512-21
    • (2008) Cell Metab , vol.8 , pp. 512-521
    • Radhakrishnan, A.1    Goldstein, J.L.2    McDonald, J.G.3    Brown, M.S.4
  • 26
    • 80052186347 scopus 로고    scopus 로고
    • Membrane-Trafficking sorting hubs: Cooperation between PI4P and small GTPases at the trans-Golgi network
    • Santiago-Tirado FH, Bretscher A. 2011. Membrane-Trafficking sorting hubs: cooperation between PI4P and small GTPases at the trans-Golgi network. Trends Cell Biol. 21:515-25
    • (2011) Trends Cell Biol , vol.21 , pp. 515-525
    • Santiago-Tirado, F.H.1    Bretscher, A.2
  • 27
    • 0034717894 scopus 로고    scopus 로고
    • Intracellular cholesterol trafficking: Role of the NPC1 protein
    • Blanchette-Mackie EJ. 2000. Intracellular cholesterol trafficking: role of the NPC1 protein. Biochim. Biophys. Acta 1486:171-83
    • (2000) Biochim. Biophys. Acta , vol.1486 , pp. 171-183
    • Blanchette-Mackie, E.J.1
  • 28
    • 66149094592 scopus 로고    scopus 로고
    • Segregation of sphingolipids and sterols during formation of secretory vesicles at the trans-Golgi network
    • Klemm RW, Ejsing CS, Surma MA, Kaiser HJ, Gerl MJ, et al. 2009. Segregation of sphingolipids and sterols during formation of secretory vesicles at the trans-Golgi network. J. Cell Biol. 185:601-12
    • (2009) J. Cell Biol , vol.185 , pp. 601-612
    • Klemm, R.W.1    Ejsing, C.S.2    Surma, M.A.3    Kaiser, H.J.4    Gerl, M.J.5
  • 29
    • 0024509922 scopus 로고
    • Plasma membranes contain half the phospholipid and 90% of the cholesterol and sphingomyelin in cultured human fibroblasts
    • Lange Y, Swaisgood MH, Ramos BV, Steck TL. 1989. Plasma membranes contain half the phospholipid and 90% of the cholesterol and sphingomyelin in cultured human fibroblasts. J. Biol. Chem. 264:3786-93
    • (1989) J. Biol. Chem , vol.264 , pp. 3786-3793
    • Lange, Y.1    Swaisgood, M.H.2    Ramos, B.V.3    Steck, T.L.4
  • 31
    • 0030977396 scopus 로고    scopus 로고
    • Quantitation of the pool of cholesterol associated with acyl-CoA:cholesterol acyltransferase in human fibroblasts
    • Lange Y, Steck TL. 1997. Quantitation of the pool of cholesterol associated with acyl-CoA:cholesterol acyltransferase in human fibroblasts. J. Biol. Chem. 272:13103-8
    • (1997) J. Biol. Chem , vol.272 , pp. 13103-13108
    • Lange, Y.1    Steck, T.L.2
  • 32
    • 0033384957 scopus 로고    scopus 로고
    • Regulation of endoplasmic reticulum cholesterol by plasma membrane cholesterol
    • Lange Y, Ye J, Rigney M, Steck TL. 1999. Regulation of endoplasmic reticulum cholesterol by plasma membrane cholesterol. J. Lipid Res. 40:2264-70
    • (1999) J. Lipid Res , vol.40 , pp. 2264-2270
    • Lange, Y.1    Ye, J.2    Rigney, M.3    Steck, T.L.4
  • 33
    • 0028912807 scopus 로고
    • Generation, modulation and maintenance of the plasma membrane asymmetric phospholipid composition in yeast cells during growth: Their relation to surface potential and membrane protein activity
    • Cerbon J, Calderon V. 1995. Generation, modulation and maintenance of the plasma membrane asymmetric phospholipid composition in yeast cells during growth: their relation to surface potential and membrane protein activity. Biochim. Biophys. Acta 1235:100-6
    • (1995) Biochim. Biophys. Acta , vol.1235 , pp. 100-106
    • Cerbon, J.1    Calderon, V.2
  • 34
    • 0021987221 scopus 로고
    • Phospholipid localization in the plasma membrane of Friend erythroleukemic cells and mouse erythrocytes
    • Rawyler A, van der Schaft PH, Roelofsen B, Op den Kamp JA. 1985. Phospholipid localization in the plasma membrane of Friend erythroleukemic cells and mouse erythrocytes. Biochemistry 24:1777-83
    • (1985) Biochemistry , vol.24 , pp. 1777-1783
    • Rawyler, A.1    Van Der Schaft, P.H.2    Roelofsen, B.3    Op Den Kamp, J.A.4
  • 35
    • 0015821003 scopus 로고
    • The asymmetric distribution of phospholipids in the human red cell membrane. A combined study using phospholipases and freeze-etch electron microscopy
    • Verkleij AJ, Zwaal RF, Roelofsen B, Comfurius P, Kastelijn D, van Deenen LL. 1973. The asymmetric distribution of phospholipids in the human red cell membrane. A combined study using phospholipases and freeze-etch electron microscopy. Biochim. Biophys. Acta 323:178-93
    • (1973) Biochim. Biophys. Acta , vol.323 , pp. 178-193
    • Verkleij, A.J.1    Zwaal, R.F.2    Roelofsen, B.3    Comfurius, P.4    Kastelijn, D.5    Van Deenen, L.L.6
  • 37
    • 38149094836 scopus 로고    scopus 로고
    • Membrane phosphatidylserine regulates surface charge and protein localization
    • Yeung T, Gilbert GE, Shi J, Silvius J, Kapus A, Grinstein S. 2008. Membrane phosphatidylserine regulates surface charge and protein localization. Science 319:210-13
    • (2008) Science , vol.319 , pp. 210-213
    • Yeung, T.1    Gilbert, G.E.2    Shi, J.3    Silvius, J.4    Kapus, A.5    Grinstein, S.6
  • 38
    • 33749836234 scopus 로고    scopus 로고
    • Phosphoinositides in cell regulation and membrane dynamics
    • Di Paolo G, De Camilli P. 2006. Phosphoinositides in cell regulation and membrane dynamics. Nature 443:651-57
    • (2006) Nature , vol.443 , pp. 651-657
    • Di Paolo, G.1    De Camilli, P.2
  • 39
    • 84857424979 scopus 로고    scopus 로고
    • Metabolism and regulation of glycerolipids in the yeast Saccharomyces cerevisiae
    • Henry SA, Kohlwein SD, Carman GM. 2012. Metabolism and regulation of glycerolipids in the yeast Saccharomyces cerevisiae. Genetics 190:317-49
    • (2012) Genetics , vol.190 , pp. 317-349
    • Henry, S.A.1    Kohlwein, S.D.2    Carman, G.M.3
  • 40
    • 84873165069 scopus 로고    scopus 로고
    • Formation and function of phosphatidylserine and phosphatidylethanolamine in mammalian cells
    • Vance JE, Tasseva G. 2013. Formation and function of phosphatidylserine and phosphatidylethanolamine in mammalian cells. Biochim. Biophys. Acta 1831:543-54
    • (2013) Biochim. Biophys. Acta , vol.1831 , pp. 543-554
    • Vance, J.E.1    Tasseva, G.2
  • 41
    • 39849102805 scopus 로고    scopus 로고
    • Regulation of sterol synthesis in eukaryotes
    • Espenshade PJ,Hughes AL. 2007. Regulation of sterol synthesis in eukaryotes. Annu. Rev. Genet. 41:401-27
    • (2007) Annu. Rev. Genet , vol.41 , pp. 401-427
    • Espenshade, P.J.1    Hughes, A.L.2
  • 42
    • 78649373124 scopus 로고    scopus 로고
    • Membranes in balance: Mechanisms of sphingolipid homeostasis
    • Breslow DK, Weissman JS. 2010. Membranes in balance: mechanisms of sphingolipid homeostasis. Mol. Cell 40:267-79
    • (2010) Mol. Cell , vol.40 , pp. 267-279
    • Breslow, D.K.1    Weissman, J.S.2
  • 43
    • 0022413533 scopus 로고
    • Assembly of the endoplasmic reticulum phospholipid bilayer: The phosphatidylcholine transporter
    • Bishop WR, Bell RM. 1985. Assembly of the endoplasmic reticulum phospholipid bilayer: the phosphatidylcholine transporter. Cell 42:51-60
    • (1985) Cell , vol.42 , pp. 51-60
    • Bishop, W.R.1    Bell, R.M.2
  • 44
    • 79961113678 scopus 로고    scopus 로고
    • High-resolution mapping reveals topologically distinct cellular pools of phosphatidylserine
    • Fairn GD, Schieber NL, Ariotti N, Murphy S, Kuerschner L, et al. 2011. High-resolution mapping reveals topologically distinct cellular pools of phosphatidylserine. J. Cell Biol. 194:257-75
    • (2011) J. Cell Biol , vol.194 , pp. 257-275
    • Fairn, G.D.1    Schieber, N.L.2    Ariotti, N.3    Murphy, S.4    Kuerschner, L.5
  • 45
    • 80755129133 scopus 로고    scopus 로고
    • A highly dynamic ER-derived phosphatidylinositolsynthesizing organelle supplies phosphoinositides to cellular membranes
    • Kim YJ, Guzman-Hernandez ML, Balla T. 2011. A highly dynamic ER-derived phosphatidylinositolsynthesizing organelle supplies phosphoinositides to cellular membranes. Dev. Cell 21:813-24
    • (2011) Dev. Cell , vol.21 , pp. 813-824
    • Kim, Y.J.1    Guzman-Hernandez, M.L.2    Balla, T.3
  • 46
    • 84855807389 scopus 로고    scopus 로고
    • Conditional peripheral membrane proteins: Facing up to limited specificity
    • Moravcevic K, Oxley CL, Lemmon MA. 2012. Conditional peripheral membrane proteins: facing up to limited specificity. Structure 20:15-27
    • (2012) Structure , vol.20 , pp. 15-27
    • Moravcevic, K.1    Oxley, C.L.2    Lemmon, M.A.3
  • 47
    • 79955973156 scopus 로고    scopus 로고
    • Identification of luminal loop 1 of Scap protein as the sterol sensor that maintains cholesterol homeostasis
    • MotamedM, Zhang Y, Wang ML, Seemann J, Kwon HJ, et al. 2011. Identification of luminal loop 1 of Scap protein as the sterol sensor that maintains cholesterol homeostasis. J. Biol. Chem. 286:18002-12
    • (2011) J. Biol. Chem , vol.286 , pp. 18002-18012
    • Motamed, M.1    Zhang, Y.2    Wang, M.L.3    Seemann, J.4    Kwon, H.J.5
  • 48
    • 84877883035 scopus 로고    scopus 로고
    • Point mutation in luminal loop 7 of Scap protein blocks interaction with loop 1 and abolishes movement to Golgi
    • Zhang Y,Motamed M, Seemann J, Brown MS, Goldstein JL. 2013. Point mutation in luminal loop 7 of Scap protein blocks interaction with loop 1 and abolishes movement to Golgi. J. Biol. Chem. 288:14059-67
    • (2013) J. Biol. Chem , vol.288 , pp. 14059-14067
    • Zhang, Y.1    Motamed, M.2    Seemann, J.3    Brown, M.S.4    Goldstein, J.L.5
  • 49
    • 2942677427 scopus 로고    scopus 로고
    • Phospholipid metabolism regulated by a transcription factor sensing phosphatidic acid
    • Loewen CJ, Gaspar ML, Jesch SA, Delon C, Ktistakis NT, et al. 2004. Phospholipid metabolism regulated by a transcription factor sensing phosphatidic acid. Science 304:1644-47
    • (2004) Science , vol.304 , pp. 1644-1647
    • Loewen, C.J.1    Gaspar, M.L.2    Jesch, S.A.3    Delon, C.4    Ktistakis, N.T.5
  • 50
    • 0038558194 scopus 로고    scopus 로고
    • A conserved ER targeting motif in three families of lipid binding proteins and in Opi1p binds VAP
    • Loewen CJ, Roy A, Levine TP. 2003. A conserved ER targeting motif in three families of lipid binding proteins and in Opi1p binds VAP. EMBO J. 22:2025-35
    • (2003) EMBO J , vol.22 , pp. 2025-2035
    • Loewen, C.J.1    Roy, A.2    Levine, T.P.3
  • 51
    • 33748300590 scopus 로고    scopus 로고
    • Phosphatidic acid- and phosphatidylserine-binding proteins
    • Stace CL, Ktistakis NT. 2006. Phosphatidic acid- and phosphatidylserine- binding proteins. Biochim. Biophys. Acta 1761:913-26
    • (2006) Biochim. Biophys. Acta , vol.1761 , pp. 913-926
    • Stace, C.L.1    Ktistakis, N.T.2
  • 52
    • 68949125160 scopus 로고    scopus 로고
    • Biophysics and function of phosphatidic acid: A molecular perspective
    • Kooijman EE, Burger KN. 2009. Biophysics and function of phosphatidic acid: A molecular perspective. Biochim. Biophys. Acta 1791:881-88
    • (2009) Biochim. Biophys. Acta , vol.1791 , pp. 881-888
    • Kooijman, E.E.1    Burger, K.N.2
  • 53
    • 34249685982 scopus 로고    scopus 로고
    • An electrostatic/hydrogen bond switch as the basis for the specific interaction of phosphatidic acid with proteins
    • Kooijman EE, Tieleman DP,Testerink C, MunnikT, Rijkers DT, et al. 2007. An electrostatic/hydrogen bond switch as the basis for the specific interaction of phosphatidic acid with proteins. J. Biol. Chem. 282:11356-64
    • (2007) J. Biol. Chem , vol.282 , pp. 11356-11364
    • Kooijman, E.E.1    Tieleman, D.P.2    Testerink, C.3    Munnik, T.4    Rijkers, D.T.5
  • 54
    • 73649107925 scopus 로고    scopus 로고
    • NTE1-encoded phosphatidylcholine phospholipase B regulates transcription of phospholipid biosynthetic genes
    • Fernandez-Murray JP, Gaspard GJ, Jesch SA, McMaster CR. 2009. NTE1-encoded phosphatidylcholine phospholipase B regulates transcription of phospholipid biosynthetic genes. J. Biol. Chem. 284:36034-46
    • (2009) J. Biol. Chem , vol.284 , pp. 36034-36046
    • Fernandez-Murray, J.P.1    Gaspard, G.J.2    Jesch, S.A.3    McMaster, C.R.4
  • 55
    • 78049319504 scopus 로고    scopus 로고
    • A phosphorylation-regulated amphipathic helix controls the membrane translocation and function of the yeast phosphatidate phosphatase
    • Karanasios E, Han GS, Xu Z, Carman GM, Siniossoglou S. 2010. A phosphorylation-regulated amphipathic helix controls the membrane translocation and function of the yeast phosphatidate phosphatase. Proc. Natl. Acad. Sci. USA 107:17539-44
    • (2010) Proc. Natl. Acad. Sci. USA , vol.107 , pp. 17539-17544
    • Karanasios, E.1    Han, G.S.2    Xu, Z.3    Carman, G.M.4    Siniossoglou, S.5
  • 56
    • 70450233453 scopus 로고    scopus 로고
    • Crystal structure of amammalian CTP: Phosphocholine cytidylyltransferase catalytic domain reveals novel active site residues within a highly conserved nucleotidyltransferase fold
    • Lee J, Johnson J, Ding Z, PaetzelM,Cornell RB. 2009. Crystal structure of amammalian CTP: phosphocholine cytidylyltransferase catalytic domain reveals novel active site residues within a highly conserved nucleotidyltransferase fold. J. Biol. Chem. 284:33535-48
    • (2009) J. Biol. Chem , vol.284 , pp. 33535-33548
    • Lee, J.1    Johnson, J.2    Ding, Z.3    Paetzel, M.4    Cornell, R.B.5
  • 57
    • 84876414053 scopus 로고    scopus 로고
    • The membrane-binding domain of an amphitropic enzyme suppresses catalysis by contact with an amphipathic helix flanking its active site
    • Huang HK, Taneva SG, Lee J, Silva LP, Schriemer DC, Cornell RB. 2013. The membrane-binding domain of an amphitropic enzyme suppresses catalysis by contact with an amphipathic helix flanking its active site. J. Mol. Biol. 425:1546-64
    • (2013) J. Mol. Biol , vol.425 , pp. 1546-1564
    • Huang, H.K.1    Taneva, S.G.2    Lee, J.3    Silva, L.P.4    Schriemer, D.C.5    Cornell, R.B.6
  • 58
    • 0141919746 scopus 로고    scopus 로고
    • Lipid-induced conformational switch in themembrane binding domain of CTP: Phosphocholine cytidylyltransferase: A circular dichroism study
    • Taneva S, Johnson JE,Cornell RB. 2003. Lipid-induced conformational switch in themembrane binding domain of CTP: phosphocholine cytidylyltransferase: A circular dichroism study. Biochemistry 42:11768-76
    • (2003) Biochemistry , vol.42 , pp. 11768-11776
    • Taneva, S.1    Johnson, J.E.2    Cornell, R.B.3
  • 59
    • 0029745175 scopus 로고    scopus 로고
    • Lipid regulation of CTP: Phosphocholine cytidylyltransferase: Electrostatic, hydrophobic, and synergistic interactions of anionic phospholipids and diacylglycerol
    • Arnold RS, Cornell RB. 1996. Lipid regulation of CTP: phosphocholine cytidylyltransferase: electrostatic, hydrophobic, and synergistic interactions of anionic phospholipids and diacylglycerol. Biochemistry 35:9917-24
    • (1996) Biochemistry , vol.35 , pp. 9917-9924
    • Arnold, R.S.1    Cornell, R.B.2
  • 60
    • 0031010020 scopus 로고    scopus 로고
    • Binding of CTP: Phosphocholine cytidylyltransferase to lipid vesicles: Diacylglycerol and enzyme dephosphorylation increase the affinity for negatively charged membranes
    • Arnold RS,DePaoli-Roach AA, Cornell RB. 1997. Binding of CTP: phosphocholine cytidylyltransferase to lipid vesicles: Diacylglycerol and enzyme dephosphorylation increase the affinity for negatively charged membranes. Biochemistry 36:6149-56
    • (1997) Biochemistry , vol.36 , pp. 6149-6156
    • Arnold, R.S.1    De Paoli-Roach, A.A.2    Cornell, R.B.3
  • 61
    • 0035807063 scopus 로고    scopus 로고
    • Regulation ofCTP: Phosphocholine cytidylyltransferase activity by the physical properties of lipid membranes: An important role for stored curvature strain energy
    • Davies SM, Epand RM,Kraayenhof R,Cornell RB. 2001. Regulation ofCTP: phosphocholine cytidylyltransferase activity by the physical properties of lipid membranes: An important role for stored curvature strain energy. Biochemistry 40:10522-31
    • (2001) Biochemistry , vol.40 , pp. 10522-10531
    • Davies, S.M.1    Epand, R.M.2    Kraayenhof, R.3    Cornell, R.B.4
  • 62
    • 0033516703 scopus 로고    scopus 로고
    • An amphipathic alpha;-helix at a membrane interface: A structural study using a novel X-ray diffraction method
    • HristovaK,WimleyWC, Mishra VK,AnantharamiahGM,Segrest JP,White SH. 1999. An amphipathic alpha;-helix at a membrane interface: A structural study using a novel X-ray diffraction method. J. Mol. Biol. 290:99-117
    • (1999) J. Mol. Biol , vol.290 , pp. 99-117
    • Hristova, K.1    Wimley, W.C.2    Mishra, V.3    Kanantharamiah, G.M.4    Segrest, J.P.5    White, S.H.6
  • 63
    • 7044235790 scopus 로고    scopus 로고
    • Thermodynamics of lipid-peptide interactions
    • Seelig J. 2004. Thermodynamics of lipid-peptide interactions. Biochim. Biophys. Acta 1666:40-50
    • (2004) Biochim. Biophys. Acta , vol.1666 , pp. 40-50
    • Seelig, J.1
  • 64
    • 33845350971 scopus 로고    scopus 로고
    • Amphipathic helices as mediators of the membrane interaction of amphitropic proteins, and as modulators of bilayer physical properties
    • Cornell RB, Taneva SG. 2006. Amphipathic helices as mediators of the membrane interaction of amphitropic proteins, and as modulators of bilayer physical properties. Curr. Protein Pept. Sci. 7:539-52
    • (2006) Curr. Protein Pept. Sci , vol.7 , pp. 539-552
    • Cornell, R.B.1    Taneva, S.G.2
  • 66
    • 33745413294 scopus 로고    scopus 로고
    • Loss of P4 ATPases Drs2p and Dnf3p disrupts aminophospholipid transport and asymmetry in yeast post-Golgi secretory vesicles
    • Alder-Baerens N, Lisman Q, Luong L, Pomorski T, Holthuis JC. 2006. Loss of P4 ATPases Drs2p and Dnf3p disrupts aminophospholipid transport and asymmetry in yeast post-Golgi secretory vesicles. Mol. Biol. Cell 17:1632-42
    • (2006) Mol. Biol. Cell , vol.17 , pp. 1632-1642
    • Alder-Baerens, N.1    Lisman, Q.2    Luong, L.3    Pomorski, T.4    Holthuis, J.C.5
  • 67
    • 0037125940 scopus 로고    scopus 로고
    • Drs2p-dependent formation of exocytic clathrin-coated vesicles in vivo
    • Gall WE,Geething NC,Hua Z, Ingram MF, Liu K, et al. 2002. Drs2p-dependent formation of exocytic clathrin-coated vesicles in vivo. Curr. Biol. 12:1623-27
    • (2002) Curr. Biol , vol.12 , pp. 1623-1627
    • Gall, W.E.1    Geething, N.C.2    Hua, Z.3    Ingram, M.F.4    Liu, K.5
  • 68
    • 84857129152 scopus 로고    scopus 로고
    • Identification of residues defining phospholipid flippase substrate specificity of type IV P-Type ATPases
    • Baldridge RD, Graham TR. 2012. Identification of residues defining phospholipid flippase substrate specificity of type IV P-Type ATPases. Proc. Natl. Acad. Sci. USA 109:E290-98
    • (2012) Proc. Natl. Acad. Sci. USA , vol.109
    • Baldridge, R.D.1    Graham, T.R.2
  • 69
    • 33947199781 scopus 로고    scopus 로고
    • Synthesis and function of membrane phosphoinositides in budding yeast, Saccharomyces cerevisiae
    • Strahl T, Thorner J. 2007. Synthesis and function of membrane phosphoinositides in budding yeast, Saccharomyces cerevisiae. Biochim. Biophys. Acta 1771:353-404
    • (2007) Biochim. Biophys. Acta , vol.1771 , pp. 353-404
    • Strahl, T.1    Thorner, J.2
  • 70
    • 0033258472 scopus 로고    scopus 로고
    • The yeast phosphatidylinositol-4-OH kinase Pik1 regulates secretion at the Golgi
    • Walch-Solimena C, Novick P. 1999. The yeast phosphatidylinositol-4-OH kinase Pik1 regulates secretion at the Golgi. Nat. Cell Biol. 1:523-25
    • (1999) Nat. Cell Biol , vol.1 , pp. 523-525
    • Walch-Solimena, C.1    Novick, P.2
  • 71
    • 0032516807 scopus 로고    scopus 로고
    • Multiple sorting pathways between the late Golgi and the vacuole in yeast
    • Conibear E, Stevens TH. 1998. Multiple sorting pathways between the late Golgi and the vacuole in yeast. Biochim. Biophys. Acta 1404:211-30
    • (1998) Biochim. Biophys. Acta , vol.1404 , pp. 211-230
    • Conibear, E.1    Stevens, T.H.2
  • 72
    • 0042591490 scopus 로고    scopus 로고
    • Phosphatidylinositol 4 phosphate regulates targeting of clathrin adaptor AP-1 complexes to the Golgi
    • Wang YJ, Wang J, SunHQ, Martinez M, Sun YX, et al. 2003. Phosphatidylinositol 4 phosphate regulates targeting of clathrin adaptor AP-1 complexes to the Golgi. Cell 114:299-310
    • (2003) Cell , vol.114 , pp. 299-310
    • Wang, Y.J.1    Wang, J.2    Sun, H.Q.3    Martinez, M.4    Sun, Y.X.5
  • 73
    • 84874033425 scopus 로고    scopus 로고
    • Structural basis for recruitment and activation of the AP-1 clathrin adaptor complex by Arf1
    • Ren X, Farias GG, Canagarajah BJ, Bonifacino JS, Hurley JH. 2013. Structural basis for recruitment and activation of the AP-1 clathrin adaptor complex by Arf1. Cell 152:755-67
    • (2013) Cell , vol.152 , pp. 755-767
    • Ren, X.1    Farias, G.G.2    Canagarajah, B.J.3    Bonifacino, J.S.4    Hurley, J.H.5
  • 74
    • 47649118467 scopus 로고    scopus 로고
    • The clathrin adaptor Gga2p is a phosphatidylinositol 4-phosphate effector at the Golgi exit
    • Demmel L, Gravert M, Ercan E, Habermann B, Muller-Reichert T, et al. 2008. The clathrin adaptor Gga2p is a phosphatidylinositol 4-phosphate effector at the Golgi exit. Mol. Biol. Cell 19:1991-2002
    • (2008) Mol. Biol. Cell , vol.19 , pp. 1991-2002
    • Demmel, L.1    Gravert, M.2    Ercan, E.3    Habermann, B.4    Muller-Reichert, T.5
  • 75
    • 0037148531 scopus 로고    scopus 로고
    • A subset of yeast vacuolar protein sorting mutants is blocked in one branch of the exocytic pathway
    • Harsay E, Schekman R. 2002. A subset of yeast vacuolar protein sorting mutants is blocked in one branch of the exocytic pathway. J. Cell Biol. 156:271-85
    • (2002) J. Cell Biol , vol.156 , pp. 271-285
    • Harsay, E.1    Schekman, R.2
  • 76
    • 0037083965 scopus 로고    scopus 로고
    • Dynamin and clathrin are required for the biogenesis of a distinct class of secretory vesicles in yeast
    • Gurunathan S, David D, Gerst JE. 2002. Dynamin and clathrin are required for the biogenesis of a distinct class of secretory vesicles in yeast. EMBO J. 21:602-14
    • (2002) EMBO J , vol.21 , pp. 602-614
    • Gurunathan, S.1    David, D.2    Gerst, J.E.3
  • 77
    • 0028787438 scopus 로고
    • Parallel secretory pathways to the cell surface in yeast
    • Harsay E, Bretscher A. 1995. Parallel secretory pathways to the cell surface in yeast. J. Cell Biol. 131:297-310
    • (1995) J. Cell Biol , vol.131 , pp. 297-310
    • Harsay, E.1    Bretscher, A.2
  • 78
    • 27944510194 scopus 로고    scopus 로고
    • Membrane recruitment of effector proteins by Arf and Rab GTPases
    • Kawasaki M, Nakayama K, Wakatsuki S. 2005. Membrane recruitment of effector proteins by Arf and Rab GTPases. Curr. Opin. Struct. Biol. 15:681-89
    • (2005) Curr. Opin. Struct. Biol , vol.15 , pp. 681-689
    • Kawasaki, M.1    Nakayama, K.2    Wakatsuki, S.3
  • 80
    • 77952943084 scopus 로고    scopus 로고
    • Phosphatidylinositol 4-phosphate controls both membrane recruitment and a regulatory switch of the Rab GEF Sec2p
    • Mizuno-Yamasaki E, Medkova M, Coleman J, Novick P. 2010. Phosphatidylinositol 4-phosphate controls both membrane recruitment and a regulatory switch of the Rab GEF Sec2p. Dev. Cell 18:828-40
    • (2010) Dev. Cell , vol.18 , pp. 828-840
    • Mizuno-Yamasaki, E.1    Medkova, M.2    Coleman, J.3    Novick, P.4
  • 81
    • 0037054540 scopus 로고    scopus 로고
    • Ypt32 recruits the Sec4p guanine nucleotide exchange factor, Sec2p, to secretory vesicles; Evidence for a Rab cascade in yeast
    • Ortiz D,Medkova M, Walch-Solimena C,Novick P. 2002. Ypt32 recruits the Sec4p guanine nucleotide exchange factor, Sec2p, to secretory vesicles; evidence for a Rab cascade in yeast. J. Cell Biol. 157:1005-15
    • (2002) J. Cell Biol , vol.157 , pp. 1005-1015
    • Ortiz, D.1    Medkova, M.2    Walch-Solimena, C.3    Novick, P.4
  • 82
    • 78651445373 scopus 로고    scopus 로고
    • PI4P and Rab inputs collaborate in myosin-V-dependent transport of secretory compartments in yeast
    • Santiago-Tirado FH, Legesse-Miller A, Schott D, Bretscher A. 2011. PI4P and Rab inputs collaborate in myosin-V-dependent transport of secretory compartments in yeast. Dev. Cell 20:47-59
    • (2011) Dev. Cell , vol.20 , pp. 47-59
    • Santiago-Tirado, F.H.1    Legesse-Miller, A.2    Schott, D.3    Bretscher, A.4
  • 83
    • 84862156515 scopus 로고    scopus 로고
    • Lipid-dependent protein sorting at the trans-Golgi network
    • Surma MA, Klose C, Simons K. 2012. Lipid-dependent protein sorting at the trans-Golgi network. Biochim. Biophys. Acta 1821:1059-67
    • (2012) Biochim. Biophys. Acta , vol.1821 , pp. 1059-1067
    • Surma, M.A.1    Klose, C.2    Simons, K.3
  • 84
    • 29144534564 scopus 로고    scopus 로고
    • A genome-wide visual screen reveals a role for sphingolipids and ergosterol in cell surface delivery in yeast
    • Proszynski TJ, Klemm RW, Gravert M, Hsu PP, Gloor Y, et al. 2005. A genome-wide visual screen reveals a role for sphingolipids and ergosterol in cell surface delivery in yeast. Proc. Natl. Acad. Sci. USA 102:17981-86
    • (2005) Proc. Natl. Acad. Sci. USA , vol.102 , pp. 17981-17986
    • Proszynski, T.J.1    Klemm, R.W.2    Gravert, M.3    Hsu, P.P.4    Gloor, Y.5
  • 85
    • 84862158504 scopus 로고    scopus 로고
    • Regulation of the Golgi complex by phospholipid remodeling enzymes
    • Ha KD, Clarke BA, Brown WJ. 2012. Regulation of the Golgi complex by phospholipid remodeling enzymes. Biochim. Biophys. Acta 1821:1078-88
    • (2012) Biochim. Biophys. Acta , vol.1821 , pp. 1078-1088
    • Ha, K.D.1    Clarke, B.A.2    Brown, W.J.3
  • 87
    • 34548496498 scopus 로고    scopus 로고
    • Diacylglycerol is required for the formation of COPI vesicles in the Golgi-To-ER transport pathway
    • Fernandez-Ulibarri I, Vilella M, Lazaro-Dieguez F, Sarri E, Martnez SE, et al. 2007. Diacylglycerol is required for the formation of COPI vesicles in the Golgi-To-ER transport pathway. Mol. Biol. Cell 18:3250-63
    • (2007) Mol. Biol. Cell , vol.18 , pp. 3250-3263
    • Fernandez-Ulibarri, I.1    Vilella, M.2    Lazaro-Dieguez, F.3    Sarri, E.4    Martnez, S.E.5
  • 88
    • 0030692015 scopus 로고    scopus 로고
    • Activation of ADP-ribosylation factor 1 GTPase-Activating protein by phosphatidylcholine-derived diacylglycerols
    • Antonny B, Huber I, Paris S, Chabre M, Cassel D. 1997. Activation of ADP-ribosylation factor 1 GTPase-Activating protein by phosphatidylcholine- derived diacylglycerols. J. Biol. Chem. 272:30848-51
    • (1997) J. Biol. Chem , vol.272 , pp. 30848-30851
    • Antonny, B.1    Huber, I.2    Paris, S.3    Chabre, M.4    Cassel, D.5
  • 89
    • 0346756190 scopus 로고    scopus 로고
    • Lipid packing sensed by ArfGAP1 couples COPI coat disassembly to membrane bilayer curvature
    • Bigay J, Gounon P, Robineau S, Antonny B. 2003. Lipid packing sensed by ArfGAP1 couples COPI coat disassembly to membrane bilayer curvature. Nature 426:563-66
    • (2003) Nature , vol.426 , pp. 563-566
    • Bigay, J.1    Gounon, P.2    Robineau, S.3    Antonny, B.4
  • 90
    • 0344119435 scopus 로고    scopus 로고
    • Prefission constriction of Golgi tubular carriers driven by local lipid metabolism: A theoretical model
    • Shemesh T, Luini A, Malhotra V, Burger KN, Kozlov MM. 2003. Prefission constriction of Golgi tubular carriers driven by local lipid metabolism: A theoretical model. Biophys. J. 85:3813-27
    • (2003) Biophys. J , vol.85 , pp. 3813-3827
    • Shemesh, T.1    Luini, A.2    Malhotra, V.3    Burger, K.N.4    Kozlov, M.M.5
  • 91
    • 0037059451 scopus 로고    scopus 로고
    • Role of diacylglycerol in PKD recruitment to the TGN and protein transport to the plasma membrane
    • Baron CL, Malhotra V. 2002. Role of diacylglycerol in PKD recruitment to the TGN and protein transport to the plasma membrane. Science 295:325-28
    • (2002) Science , vol.295 , pp. 325-328
    • Baron, C.L.1    Malhotra, V.2
  • 92
    • 77949477235 scopus 로고    scopus 로고
    • Role of the second cysteine-rich domain and Pro275 in protein kinase D2 interaction with ADP-ribosylation factor 1, trans-Golgi network recruitment, and protein transport
    • Pusapati GV, Krndija D, Armacki M, von Wichert G, von Blume J, et al. 2010. Role of the second cysteine-rich domain and Pro275 in protein kinase D2 interaction with ADP-ribosylation factor 1, trans-Golgi network recruitment, and protein transport. Mol. Biol. Cell 21:1011-22
    • (2010) Mol. Biol. Cell , vol.21 , pp. 1011-1022
    • Pusapati, G.V.1    Krndija, D.2    Armacki, M.3    Von Wichert, G.4    Von Blume, J.5
  • 93
    • 84867698481 scopus 로고    scopus 로고
    • The BAR domain protein Arfaptin-1 controls secretory granule biogenesis at the trans-Golgi network
    • Gehart H, Goginashvili A, Beck R, Morvan J, Erbs E, et al. 2012. The BAR domain protein Arfaptin-1 controls secretory granule biogenesis at the trans-Golgi network. Dev. Cell 23:756-68
    • (2012) Dev. Cell , vol.23 , pp. 756-768
    • Gehart, H.1    Goginashvili, A.2    Beck, R.3    Morvan, J.4    Erbs, E.5
  • 94
    • 84879460575 scopus 로고    scopus 로고
    • Recruitment of arfaptins to the trans-Golgi network by PI(4)P and their involvement in cargo export
    • Cruz-Garcia D, Ortega-BellidoM, Scarpa M, Villeneuve J, Jovic M, et al. 2013. Recruitment of arfaptins to the trans-Golgi network by PI(4)P and their involvement in cargo export. EMBO J. 32:1717-29
    • (2013) EMBO J , vol.32 , pp. 1717-1729
    • Cruz-Garcia, D.1    Ortega-Bellido, M.2    Scarpa, M.3    Villeneuve, J.4    Jovic, M.5
  • 95
    • 0034735575 scopus 로고    scopus 로고
    • Evidence for segregation of sphingomyelin and cholesterol during formation of COPI-coated vesicles
    • Brugger B, Sandhoff R, Wegehingel S, Gorgas K, Malsam J, et al. 2000. Evidence for segregation of sphingomyelin and cholesterol during formation of COPI-coated vesicles. J. Cell Biol. 151:507-18
    • (2000) J. Cell Biol , vol.151 , pp. 507-518
    • Brugger, B.1    Sandhoff, R.2    Wegehingel, S.3    Gorgas, K.4    Malsam, J.5
  • 96
    • 17144403817 scopus 로고    scopus 로고
    • Transport of newly synthesized sterol to the sterol-enriched plasma membrane occurs via nonvesicular equilibration
    • Baumann NA, Sullivan DP, Ohvo-Rekila H, Simonot C, Pottekat A, et al. 2005. Transport of newly synthesized sterol to the sterol-enriched plasma membrane occurs via nonvesicular equilibration. Biochemistry 44:5816-26
    • (2005) Biochemistry , vol.44 , pp. 5816-5826
    • Baumann, N.A.1    Sullivan, D.P.2    Ohvo-Rekila, H.3    Simonot, C.4    Pottekat, A.5
  • 97
    • 0025219658 scopus 로고
    • The gene encoding the phosphatidylinositol transfer protein is essential for cell growth
    • Aitken JF, van HeusdenGP, Temkin M, Dowhan W. 1990. The gene encoding the phosphatidylinositol transfer protein is essential for cell growth. J. Biol. Chem. 265:4711-17
    • (1990) J. Biol. Chem , vol.265 , pp. 4711-4717
    • Aitken, J.F.1    Van Heusden, G.P.2    Temkin, M.3    Dowhan, W.4
  • 98
    • 0025094319 scopus 로고
    • An essential role for a phospholipid transfer protein in yeast Golgi function
    • Bankaitis VA, Aitken JR, Cleves AE, Dowhan W. 1990. An essential role for a phospholipid transfer protein in yeast Golgi function. Nature 347:561-62
    • (1990) Nature , vol.347 , pp. 561-562
    • Bankaitis, V.A.1    Aitken, J.R.2    Cleves, A.E.3    Dowhan, W.4
  • 99
    • 84873865915 scopus 로고    scopus 로고
    • Localization of lipid raft proteins to the plasma membrane is a major function of the phospholipid transfer protein Sec14
    • Curwin AJ, Leblanc MA, Fairn GD, McMaster CR. 2013. Localization of lipid raft proteins to the plasma membrane is a major function of the phospholipid transfer protein Sec14. PLoS ONE 8:e55388
    • (2013) PLoS ONE , vol.8
    • Curwin, A.J.1    Leblanc, M.A.2    Fairn, G.D.3    McMaster, C.R.4
  • 100
    • 0026073075 scopus 로고
    • Mutations in the CDP- choline pathway for phospholipid biosynthesis bypass the requirement for an essential phospholipid transfer protein
    • Cleves AE, McGee TP, Whitters EA, Champion KM, Aitken JR, et al. 1991. Mutations in the CDP- choline pathway for phospholipid biosynthesis bypass the requirement for an essential phospholipid transfer protein. Cell 64:789-800
    • (1991) Cell , vol.64 , pp. 789-800
    • Cleves, A.E.1    McGee, T.P.2    Whitters, E.A.3    Champion, K.M.4    Aitken, J.R.5
  • 101
    • 0032576758 scopus 로고    scopus 로고
    • Crystal structure of the Saccharomyces cerevisiae phosphatidylinositol- Transfer protein
    • Sha B, Phillips SE, Bankaitis VA, Luo M. 1998. Crystal structure of the Saccharomyces cerevisiae phosphatidylinositol-Transfer protein. Nature 391:506-10
    • (1998) Nature , vol.391 , pp. 506-510
    • Sha, B.1    Phillips, S.E.2    Bankaitis, V.A.3    Luo, M.4
  • 102
    • 38649109468 scopus 로고    scopus 로고
    • Functional anatomy of phospholipid binding and regulation of phosphoinositide homeostasis by proteins of the Sec14 superfamily
    • Schaaf G, Ortlund EA, Tyeryar KR,MousleyCJ, IleKE, et al. 2008. Functional anatomy of phospholipid binding and regulation of phosphoinositide homeostasis by proteins of the Sec14 superfamily. Mol. Cell 29:191-206
    • (2008) Mol. Cell , vol.29 , pp. 191-206
    • Schaaf, G.1    Ortlund, E.A.2    Tyeryar, K.R.3    Mousley, C.J.4    Ile, K.E.5
  • 103
    • 34848818827 scopus 로고    scopus 로고
    • The oxysterol binding protein Kes1p regulates Golgi apparatus phosphatidylinositol-4-phosphate function
    • Fairn GD, Curwin AJ, Stefan CJ, McMaster CR. 2007. The oxysterol binding protein Kes1p regulates Golgi apparatus phosphatidylinositol-4-phosphate function. Proc. Natl. Acad. Sci. USA 104:15352-57
    • (2007) Proc. Natl. Acad. Sci. USA , vol.104 , pp. 15352-15357
    • Fairn, G.D.1    Curwin, A.J.2    Stefan, C.J.3    McMaster, C.R.4
  • 104
    • 0030861295 scopus 로고    scopus 로고
    • Role of the yeast phosphatidylinositol/ phosphatidylcholine transfer protein (Sec14p) in phosphatidylcholine turnover and INO1regulation
    • Patton-Vogt JL,Griac P, Sreenivas A, Bruno V,Dowd S, et al. 1997. Role of the yeast phosphatidylinositol/ phosphatidylcholine transfer protein (Sec14p) in phosphatidylcholine turnover and INO1regulation. J. Biol. Chem. 272:20873-83
    • (1997) J. Biol. Chem , vol.272 , pp. 20873-20883
    • Patton-Vogt, J.L.1    Griac, P.2    Sreenivas, A.3    Bruno, V.4    Dowd, S.5
  • 105
    • 0035158785 scopus 로고    scopus 로고
    • Phosphatidylcholine synthesis influences the diacylglycerol homeostasis required for SEC14p-dependent Golgi function and cell growth
    • Henneberry AL, Lagace TA, Ridgway ND, McMaster CR. 2001. Phosphatidylcholine synthesis influences the diacylglycerol homeostasis required for SEC14p-dependent Golgi function and cell growth. Mol. Biol. Cell 12:511-20
    • (2001) Mol. Biol. Cell , vol.12 , pp. 511-520
    • Henneberry, A.L.1    Lagace, T.A.2    Ridgway, N.D.3    McMaster, C.R.4
  • 106
    • 0036734611 scopus 로고    scopus 로고
    • The major sites of cellular phospholipid synthesis and molecular determinants of fatty acid and lipid head group specificity
    • Henneberry AL,Wright MM, McMaster CR. 2002. The major sites of cellular phospholipid synthesis and molecular determinants of fatty acid and lipid head group specificity. Mol. Biol. Cell 13:3148-61
    • (2002) Mol. Biol. Cell , vol.13 , pp. 3148-3161
    • Henneberry, A.L.1    Wright, M.M.2    McMaster, C.R.3
  • 107
    • 0029588457 scopus 로고
    • Phospholipid-synthesizing enzymes in Golgi membranes of the yeast, Saccharomyces cerevisiae
    • Leber A, Hrastnik C, Daum G. 1995. Phospholipid-synthesizing enzymes in Golgi membranes of the yeast, Saccharomyces cerevisiae. FEBS Lett. 377:271-74
    • (1995) FEBS Lett , vol.377 , pp. 271-274
    • Leber, A.1    Hrastnik, C.2    Daum, G.3
  • 109
    • 0033840656 scopus 로고    scopus 로고
    • Distinct roles for the yeast phosphatidylinositol 4-kinases, Stt4p and Pik1p, in secretion, cell growth, and organelle membrane dynamics
    • Audhya A, Foti M, Emr SD. 2000. Distinct roles for the yeast phosphatidylinositol 4-kinases, Stt4p and Pik1p, in secretion, cell growth, and organelle membrane dynamics. Mol. Biol. Cell 11:2673-89
    • (2000) Mol. Biol. Cell , vol.11 , pp. 2673-2689
    • Audhya, A.1    Foti, M.2    Emr, S.D.3
  • 110
    • 0033607537 scopus 로고    scopus 로고
    • Direct involvement of phosphatidylinositol 4-phosphate in secretion in the yeast Saccharomyces cerevisiae
    • Hama H, Schnieders EA, Thorner J, Takemoto JY, DeWald DB. 1999. Direct involvement of phosphatidylinositol 4-phosphate in secretion in the yeast Saccharomyces cerevisiae. J. Biol. Chem. 274:34294-300
    • (1999) J. Biol. Chem , vol.274 , pp. 34294-34300
    • Hama, H.1    Schnieders, E.A.2    Thorner, J.3    Takemoto, J.Y.4    Dewald, D.B.5
  • 111
    • 0033531924 scopus 로고    scopus 로고
    • SEC14-dependent secretion in Saccharomyces cerevisiae. Nondependence on sphingolipid synthesis-coupled diacylglycerol production
    • Stock SD, Hama H, DeWald DB, Takemoto JY. 1999. SEC14-dependent secretion in Saccharomyces cerevisiae. Nondependence on sphingolipid synthesis-coupled diacylglycerol production. J. Biol. Chem. 274:12979-83
    • (1999) J. Biol. Chem , vol.274 , pp. 12979-12983
    • Stock, S.D.1    Hama, H.2    Dewald, D.B.3    Takemoto, J.Y.4
  • 112
    • 0029803610 scopus 로고    scopus 로고
    • Kes1p shares homology with human oxysterol binding protein and participates in a novel regulatory pathway for yeast Golgi-derived transport vesicle biogenesis
    • Fang M, Kearns BG, Gedvilaite A, Kagiwada S, Kearns M, et al. 1996. Kes1p shares homology with human oxysterol binding protein and participates in a novel regulatory pathway for yeast Golgi-derived transport vesicle biogenesis. EMBO J. 15:6447-59
    • (1996) EMBO J , vol.15 , pp. 6447-6459
    • Fang, M.1    Kearns, B.G.2    Gedvilaite, A.3    Kagiwada, S.4    Kearns, M.5
  • 113
  • 114
    • 77957352699 scopus 로고    scopus 로고
    • The diverse functions of oxysterol-binding proteins
    • Raychaudhuri S, Prinz WA. 2010. The diverse functions of oxysterol-binding proteins. Annu. Rev. Cell Dev. Biol. 26:157-77
    • (2010) Annu. Rev. Cell Dev. Biol , vol.26 , pp. 157-177
    • Raychaudhuri, S.1    Prinz, W.A.2
  • 115
    • 24344455560 scopus 로고    scopus 로고
    • Structural mechanism for sterol sensing and transport by OSBP-related proteins
    • Im YJ, Raychaudhuri S, Prinz WA, Hurley JH. 2005. Structural mechanism for sterol sensing and transport by OSBP-related proteins. Nature 437:154-58
    • (2005) Nature , vol.437 , pp. 154-158
    • Im, Y.J.1    Raychaudhuri, S.2    Prinz, W.A.3    Hurley, J.H.4
  • 116
    • 18844430347 scopus 로고    scopus 로고
    • Identification and assessment of the role of a nominal phospholipid binding region of ORP1S (oxysterol-binding-protein-related protein 1 short) in the regulation of vesicular transport
    • Fairn GD, McMaster CR. 2005. Identification and assessment of the role of a nominal phospholipid binding region of ORP1S (oxysterol-binding-protein- related protein 1 short) in the regulation of vesicular transport. Biochem. J. 387:889-96
    • (2005) Biochem. J , vol.387 , pp. 889-896
    • Fairn, G.D.1    McMaster, C.R.2
  • 117
    • 0036544518 scopus 로고    scopus 로고
    • Analysis of oxysterol binding protein homologue Kes1p function in regulation of Sec14p-dependent protein transport from the yeast Golgi complex
    • Li X, Rivas MP, Fang M, Marchena J, Mehrotra B, et al. 2002. Analysis of oxysterol binding protein homologue Kes1p function in regulation of Sec14p-dependent protein transport from the yeast Golgi complex. J. Cell Biol. 157:63-77
    • (2002) J. Cell Biol , vol.157 , pp. 63-77
    • Li, X.1    Rivas, M.P.2    Fang, M.3    Marchena, J.4    Mehrotra, B.5
  • 118
    • 33645727511 scopus 로고    scopus 로고
    • Nonvesicular sterol movement from plasma membrane to ER requires oxysterol-binding protein-related proteins and phosphoinositides
    • Raychaudhuri S, Im YJ, Hurley JH, Prinz WA. 2006. Nonvesicular sterol movement from plasma membrane to ER requires oxysterol-binding protein-related proteins and phosphoinositides. J. Cell Biol. 173:107-19
    • (2006) J. Cell Biol , vol.173 , pp. 107-119
    • Raychaudhuri, S.1    Im, Y.J.2    Hurley, J.H.3    Prinz, W.A.4
  • 119
    • 4344641314 scopus 로고    scopus 로고
    • A role for yeast oxysterol-binding protein homologs in endocytosis and in the maintenance of intracellular sterol-lipid distribution
    • Beh CT, Rine J. 2004. A role for yeast oxysterol-binding protein homologs in endocytosis and in the maintenance of intracellular sterol-lipid distribution. J. Cell Sci. 117:2983-96
    • (2004) J. Cell Sci , vol.117 , pp. 2983-2996
    • Beh, C.T.1    Rine, J.2
  • 120
    • 80052630805 scopus 로고    scopus 로고
    • Osh proteins regulate membrane sterol organization but are not required for sterol movement between the ER and PM
    • Georgiev AG, Sullivan DP, KerstingMC, Dittman JS, Beh CT,Menon AK. 2011. Osh proteins regulate membrane sterol organization but are not required for sterol movement between the ER and PM. Traffic 12:1341-55
    • (2011) Traffic , vol.12 , pp. 1341-1355
    • Georgiev, A.G.1    Sullivan, D.P.2    Kersting, M.C.3    Dittman, J.S.4    Beh, C.T.5    Menon, A.K.6
  • 121
    • 84855474121 scopus 로고    scopus 로고
    • Osh4p exchanges sterols for phosphatidylinositol 4-phosphate between lipid bilayers
    • de Saint-Jean M, Delfosse V, Douguet D, Chicanne G, Payrastre B, et al. 2011. Osh4p exchanges sterols for phosphatidylinositol 4-phosphate between lipid bilayers. J. Cell Biol. 195:965-78
    • (2011) J. Cell Biol , vol.195 , pp. 965-978
    • De Saint-Jean, M.1    Delfosse, V.2    Douguet, D.3    Chicanne, G.4    Payrastre, B.5
  • 122
    • 13844265984 scopus 로고    scopus 로고
    • Cell growthdependent coordination of lipid signaling and glycosylation is mediated by interactions between Sac1p and Dpm1p
    • Faulhammer F, Konrad G, Brankatschk B, Tahirovic S, Knodler A, Mayinger P. 2005. Cell growthdependent coordination of lipid signaling and glycosylation is mediated by interactions between Sac1p and Dpm1p. J. Cell Biol. 168:185-91
    • (2005) J. Cell Biol , vol.168 , pp. 185-191
    • Faulhammer, F.1    Konrad, G.2    Brankatschk, B.3    Tahirovic, S.4    Knodler, A.5    Mayinger, P.6
  • 123
    • 77958519249 scopus 로고    scopus 로고
    • Lipid binding requirements for oxysterol-binding protein Kes1 inhibition of autophagy and endosome-Trans-Golgi trafficking pathways
    • LeBlanc MA, McMaster CR. 2010. Lipid binding requirements for oxysterol-binding protein Kes1 inhibition of autophagy and endosome-Trans-Golgi trafficking pathways. J. Biol. Chem. 285:33875-84
    • (2010) J. Biol. Chem , vol.285 , pp. 33875-33884
    • Leblanc, M.A.1    McMaster, C.R.2
  • 124
    • 84878374845 scopus 로고    scopus 로고
    • Impaired alpha;-TTP-PIPs interaction underlies familial vitamin e deficiency
    • Kono N, Ohto U, Hiramatsu T, Urabe M, Uchida Y, et al. 2013. Impaired alpha;-TTP-PIPs interaction underlies familial vitamin E deficiency. Science 340:1106-10
    • (2013) Science , vol.340 , pp. 1106-1110
    • Kono, N.1    Ohto, U.2    Hiramatsu, T.3    Urabe, M.4    Uchida, Y.5
  • 125
    • 67449116832 scopus 로고    scopus 로고
    • Control of protein and sterol trafficking by antagonistic activities of a type IVP-TypeATPase and oxysterol binding protein homologue
    • Muthusamy BP, Raychaudhuri S, Natarajan P, Abe F, Liu K, et al. 2009. Control of protein and sterol trafficking by antagonistic activities of a type IVP-TypeATPase and oxysterol binding protein homologue. Mol. Biol. Cell 20:2920-31
    • (2009) Mol. Biol. Cell , vol.20 , pp. 2920-2931
    • Muthusamy, B.P.1    Raychaudhuri, S.2    Natarajan, P.3    Abe, F.4    Liu, K.5
  • 126
    • 0033179969 scopus 로고    scopus 로고
    • Yeast Sec14p deficient in phosphatidylinositol transfer activity is functional in vivo
    • Phillips SE, Sha B, Topalof L, Xie Z, Alb JG, et al. 1999. Yeast Sec14p deficient in phosphatidylinositol transfer activity is functional in vivo. Mol. Cell 4:187-97
    • (1999) Mol. Cell , vol.4 , pp. 187-197
    • Phillips, S.E.1    Sha, B.2    Topalof, L.3    Xie, Z.4    Alb, J.G.5
  • 127
    • 33846107928 scopus 로고    scopus 로고
    • Phosphatidylcholine transfer activity of yeast Sec14p is not essential for its function in vivo
    • Tahotna D, Holic R, Poloncova K, Simockova M, Griac P. 2007. Phosphatidylcholine transfer activity of yeast Sec14p is not essential for its function in vivo. Biochim. Biophys. Acta 1771:83-92
    • (2007) Biochim. Biophys. Acta , vol.1771 , pp. 83-92
    • Tahotna, D.1    Holic, R.2    Poloncova, K.3    Simockova, M.4    Griac, P.5
  • 128
    • 0028906430 scopus 로고
    • The Saccharomyces cerevisiae phosphatidylinositol-Transfer protein effects a ligand-dependent inhibition of choline-phosphate cytidylyltransferase activity
    • Skinner HB, McGee TP, McMaster CR, Fry MR, Bell RM, Bankaitis VA. 1995. The Saccharomyces cerevisiae phosphatidylinositol-Transfer protein effects a ligand-dependent inhibition of choline-phosphate cytidylyltransferase activity. Proc. Natl. Acad. Sci. USA 92:112-16
    • (1995) Proc. Natl. Acad. Sci. USA , vol.92 , pp. 112-116
    • Skinner, H.B.1    McGee, T.P.2    McMaster, C.R.3    Fry, M.R.4    Bell, R.M.5    Bankaitis, V.A.6
  • 129
    • 77649159735 scopus 로고    scopus 로고
    • The Sec14 superfamily andmechanisms for crosstalk between lipid metabolism and lipid signaling
    • Bankaitis VA,MousleyCJ, Schaaf G. 2010. The Sec14 superfamily andmechanisms for crosstalk between lipid metabolism and lipid signaling. Trends Biochem. Sci. 35:150-60
    • (2010) Trends Biochem. Sci , vol.35 , pp. 150-160
    • Bankaitis, V.A.1    Mousley, C.J.2    Schaaf, G.3
  • 130
    • 18944406929 scopus 로고    scopus 로고
    • The spatial organization of lipid synthesis in the yeast Saccharomyces cerevisiae derived from large-scale green fluorescent protein tagging and high-resolution microscopy
    • Natter K, Leitner P, Faschinger A, WolinskiH,McCraith S, et al. 2005. The spatial organization of lipid synthesis in the yeast Saccharomyces cerevisiae derived from large-scale green fluorescent protein tagging and high-resolution microscopy. Mol. Cell Proteomics 4:662-72
    • (2005) Mol. Cell Proteomics , vol.4 , pp. 662-672
    • Natter, K.1    Leitner, P.2    Faschinger, A.3    Wolinski, H.4    McCraith, S.5
  • 131
    • 65549133823 scopus 로고    scopus 로고
    • Modulation of sphingolipid metabolism by the phosphatidylinositol-4- phosphate phosphatase Sac1p through regulation of phosphatidylinositol in Saccharomyces cerevisiae
    • Brice SE, Alford CW, Cowart LA. 2009. Modulation of sphingolipid metabolism by the phosphatidylinositol-4-phosphate phosphatase Sac1p through regulation of phosphatidylinositol in Saccharomyces cerevisiae. J. Biol. Chem. 284:7588-96
    • (2009) J. Biol. Chem , vol.284 , pp. 7588-7596
    • Brice, S.E.1    Alford, C.W.2    Cowart, L.A.3
  • 133
    • 79959437055 scopus 로고    scopus 로고
    • STIM proteins and the endoplasmic reticulum-plasma membrane junctions
    • Carrasco S,Meyer T. 2011. STIM proteins and the endoplasmic reticulum-plasma membrane junctions. Annu. Rev. Biochem. 80:973-1000
    • (2011) Annu. Rev. Biochem , vol.80 , pp. 973-1000
    • Carrasco, S.1    Meyer, T.2
  • 136
    • 0032543562 scopus 로고    scopus 로고
    • The pleckstrin homology domain of oxysterol-binding protein recognises a determinant specific to Golgi membranes
    • Levine TP, Munro S. 1998. The pleckstrin homology domain of oxysterol-binding protein recognises a determinant specific to Golgi membranes. Curr. Biol. 8:729-39
    • (1998) Curr. Biol , vol.8 , pp. 729-739
    • Levine, T.P.1    Munro, S.2
  • 137
    • 0347611095 scopus 로고    scopus 로고
    • Molecular machinery for non-vesicular trafficking of ceramide
    • Hanada K, KumagaiK,Yasuda S, MiuraY,KawanoM, et al. 2003. Molecular machinery for non-vesicular trafficking of ceramide. Nature 426:803-9
    • (2003) Nature , vol.426 , pp. 803-809
    • Hanada, K.1    Kumagai, K.2    Yasuda, S.3    Miura, Y.4    Kawano, M.5
  • 138
    • 0037197804 scopus 로고    scopus 로고
    • Targeting of Golgi-specific pleckstrin homology domains involves both PtdIns 4-kinase-dependent and -independent components
    • Levine TP, Munro S. 2002. Targeting of Golgi-specific pleckstrin homology domains involves both PtdIns 4-kinase-dependent and -independent components. Curr. Biol. 12:695-704
    • (2002) Curr. Biol , vol.12 , pp. 695-704
    • Levine, T.P.1    Munro, S.2
  • 139
    • 33749555280 scopus 로고    scopus 로고
    • Efficient trafficking of ceramide from the endoplasmic reticulum to the Golgi apparatus requires a VAMP-Associated protein-interacting FFAT motif of CERT
    • Kawano M, Kumagai K, Nishijima M, Hanada K. 2006. Efficient trafficking of ceramide from the endoplasmic reticulum to the Golgi apparatus requires a VAMP-Associated protein-interacting FFAT motif of CERT. J. Biol. Chem. 281:30279-88
    • (2006) J. Biol. Chem , vol.281 , pp. 30279-30288
    • Kawano, M.1    Kumagai, K.2    Nishijima, M.3    Hanada, K.4
  • 140
    • 65249161758 scopus 로고    scopus 로고
    • Oxysterol binding protein-related protein 9 (ORP9) is a cholesterol transfer protein that regulates Golgi structure and function
    • NgoM, Ridgway ND. 2009. Oxysterol binding protein-related protein 9 (ORP9) is a cholesterol transfer protein that regulates Golgi structure and function. Mol. Biol. Cell 20:1388-99
    • (2009) Mol. Biol. Cell , vol.20 , pp. 1388-1399
    • Ngo, M.1    Ridgway, N.D.2
  • 141
    • 0026564767 scopus 로고
    • Translocation of oxysterol binding protein to Golgi apparatus triggered by ligand binding
    • Ridgway ND, Dawson PA, Ho YK, Brown MS, Goldstein JL. 1992. Translocation of oxysterol binding protein to Golgi apparatus triggered by ligand binding. J. Cell Biol. 116:307-19
    • (1992) J. Cell Biol , vol.116 , pp. 307-319
    • Ridgway, N.D.1    Dawson, P.A.2    Ho, Y.K.3    Brown, M.S.4    Goldstein, J.L.5
  • 142
    • 0037119364 scopus 로고    scopus 로고
    • Vesicle-Associated membrane protein-Associated protein A(VAP-A) interactswith the oxysterol-binding protein to modify export from the endoplasmic reticulum
    • Wyles JP,McMaster CR, Ridgway ND. 2002. Vesicle-Associated membrane protein-Associated protein A(VAP-A) interactswith the oxysterol-binding protein to modify export from the endoplasmic reticulum. J. Biol. Chem. 277:29908-18
    • (2002) J. Biol. Chem , vol.277 , pp. 29908-29918
    • Wyles, J.P.1    McMaster, C.R.2    Ridgway, N.D.3
  • 143
    • 0034947717 scopus 로고    scopus 로고
    • Golgi localization and phosphorylation of oxysterol binding protein in Niemann-Pick C and U18666A-Treated cells
    • Mohammadi A, Perry RJ, Storey MK, Cook HW, Byers DM, Ridgway ND. 2001. Golgi localization and phosphorylation of oxysterol binding protein in Niemann-Pick C and U18666A-Treated cells. J. Lipid Res. 42:1062-71
    • (2001) J. Lipid Res , vol.42 , pp. 1062-1071
    • Mohammadi, A.1    Perry, R.J.2    Storey, M.K.3    Cook, H.W.4    Byers, D.M.5    Ridgway, N.D.6
  • 144
    • 34249848111 scopus 로고    scopus 로고
    • Sterol-regulated transport of SREBPs from endoplasmic reticulum to Golgi: Oxysterols block transport by binding to Insig
    • Radhakrishnan A, Ikeda Y, Kwon HJ, Brown MS, Goldstein JL. 2007. Sterol-regulated transport of SREBPs from endoplasmic reticulum to Golgi: Oxysterols block transport by binding to Insig. Proc. Natl. Acad. Sci. USA 104:6511-18
    • (2007) Proc. Natl. Acad. Sci. USA , vol.104 , pp. 6511-6518
    • Radhakrishnan, A.1    Ikeda, Y.2    Kwon, H.J.3    Brown, M.S.4    Goldstein, J.L.5
  • 145
    • 0028979940 scopus 로고
    • 25-Hydroxycholesterol stimulates sphingomyelin synthesis in Chinese hamster ovary cells
    • Ridgway ND. 1995. 25-Hydroxycholesterol stimulates sphingomyelin synthesis in Chinese hamster ovary cells. J. Lipid Res. 36:1345-58
    • (1995) J. Lipid Res , vol.36 , pp. 1345-1358
    • Ridgway, N.D.1
  • 146
    • 33744728346 scopus 로고    scopus 로고
    • Oxysterol-binding protein and vesicle-Associated membrane protein- associated protein are required for sterol-dependent activation of the ceramide transport protein
    • Perry RJ, Ridgway ND. 2006. Oxysterol-binding protein and vesicle-Associated membrane protein- associated protein are required for sterol-dependent activation of the ceramide transport protein. Mol. Biol. Cell 17:2604-16
    • (2006) Mol. Biol. Cell , vol.17 , pp. 2604-2616
    • Perry, R.J.1    Ridgway, N.D.2
  • 147
    • 84866434896 scopus 로고    scopus 로고
    • Multi-site phosphorylation of oxysterol binding protein (OSBP) regulates sterol binding and activation of sphingomyelin synthesis
    • Goto A, Liu X, Robinson CA, Ridgway ND. 2012. Multi-site phosphorylation of oxysterol binding protein (OSBP) regulates sterol binding and activation of sphingomyelin synthesis. Mol. Biol. Cell 23:3624-35
    • (2012) Mol. Biol. Cell , vol.23 , pp. 3624-3635
    • Goto, A.1    Liu, X.2    Robinson, C.A.3    Ridgway, N.D.4
  • 148
    • 84887957821 scopus 로고    scopus 로고
    • A four-step cycle driven by PI(4)P hydrolysis directs sterol/PI(4)P exchange by the ER-Golgi tether OSBP
    • Mesmin B, Bigay J, Moser von Filseck J, Lacas-Gervais S, Drin G, Antonny B. 2013. A four-step cycle driven by PI(4)P hydrolysis directs sterol/PI(4)P exchange by the ER-Golgi tether OSBP. Cell 155:830-43
    • (2013) Cell , vol.155 , pp. 830-843
    • Mesmin, B.1    Bigay, J.2    Moser Von Filseck, J.3    Lacas-Gervais, S.4    Drin, G.5    Antonny, B.6
  • 149
    • 84862637666 scopus 로고    scopus 로고
    • Phosphatidylinositol 4-kinase IIalpha; Is palmitoylated by Golgi-localized palmitoyltransferases in cholesterol-dependent manner
    • Lu D, Sun HQ, Wang H, Barylko B, Fukata Y, et al. 2012. Phosphatidylinositol 4-kinase IIalpha; is palmitoylated by Golgi-localized palmitoyltransferases in cholesterol-dependent manner. J. Biol. Chem. 287:21856-65
    • (2012) J. Biol. Chem , vol.287 , pp. 21856-21865
    • Lu, D.1    Sun, H.Q.2    Wang, H.3    Barylko, B.4    Fukata, Y.5
  • 150
    • 78650123509 scopus 로고    scopus 로고
    • Oxysterol binding protein- dependent activation of sphingomyelin synthesis in the Golgi apparatus requires phosphatidylinositol 4-kinase IIalpha;
    • Banerji S, Ngo M, Lane CF, Robinson CA,Minogue S, Ridgway ND. 2010. Oxysterol binding protein- dependent activation of sphingomyelin synthesis in the Golgi apparatus requires phosphatidylinositol 4-kinase IIalpha;. Mol. Biol. Cell 21:4141-50
    • (2010) Mol. Biol. Cell , vol.21 , pp. 4141-4150
    • Banerji, S.1    Ngo, M.2    Lane, C.F.3    Robinson, C.A.4    Minogue, S.5    Ridgway, N.D.6
  • 151
    • 0033194151 scopus 로고    scopus 로고
    • ARF mediates recruitment of PtdIns-4- OH kinase-βand stimulates synthesis of PtdIns(4,5)P2 on the Golgi complex
    • Godi A, Pertile P, Meyers R, Marra P, Di Tullio G, et al. 1999. ARF mediates recruitment of PtdIns-4- OH kinase-βand stimulates synthesis of PtdIns(4,5)P2 on the Golgi complex. Nat. Cell Biol. 1:280-87
    • (1999) Nat. Cell Biol , vol.1 , pp. 280-287
    • Godi, A.1    Pertile, P.2    Meyers, R.3    Marra, P.4    Di Tullio, G.5
  • 152
    • 55549111249 scopus 로고    scopus 로고
    • Coordinated lipid transfer between the endoplasmic reticulum and the Golgi complex requires the VAP proteins and is essential for Golgimediated transport
    • Peretti D, Dahan N, Shimoni E, Hirschberg K, Lev S. 2008. Coordinated lipid transfer between the endoplasmic reticulum and the Golgi complex requires the VAP proteins and is essential for Golgimediated transport. Mol. Biol. Cell 19:3871-84
    • (2008) Mol. Biol. Cell , vol.19 , pp. 3871-3884
    • Peretti, D.1    Dahan, N.2    Shimoni, E.3    Hirschberg, K.4    Lev, S.5
  • 153
    • 14744294236 scopus 로고    scopus 로고
    • Maintenance of the diacylglycerol level in theGolgi apparatus by the Nir2 protein is critical forGolgi secretory function
    • Litvak V, Dahan N, Ramachandran S, Sabanay H, Lev S. 2005. Maintenance of the diacylglycerol level in theGolgi apparatus by the Nir2 protein is critical forGolgi secretory function. Nat. Cell Biol. 7:225-34
    • (2005) Nat. Cell Biol , vol.7 , pp. 225-234
    • Litvak, V.1    Dahan, N.2    Ramachandran, S.3    Sabanay, H.4    Lev, S.5
  • 154
    • 26944446652 scopus 로고    scopus 로고
    • Protein kinase D regulates vesicular transport by phosphorylating and activating phosphatidylinositol-4 kinase IIIβ at the Golgi complex
    • Hausser A, Storz P, Martens S, Link G, Toker A, Pfizenmaier K. 2005. Protein kinase D regulates vesicular transport by phosphorylating and activating phosphatidylinositol-4 kinase IIIβ at the Golgi complex. Nat. Cell Biol. 7:880-86
    • (2005) Nat. Cell Biol , vol.7 , pp. 880-886
    • Hausser, A.1    Storz, P.2    Martens, S.3    Link, G.4    Toker, A.5    Pfizenmaier, K.6
  • 155
    • 77954204064 scopus 로고    scopus 로고
    • Regulation of oxysterol-binding protein Golgi localization through protein kinase D-mediated phosphorylation
    • Nhek S, Ngo M, Yang X, Ng MM, Field SJ, et al. 2010. Regulation of oxysterol-binding protein Golgi localization through protein kinase D-mediated phosphorylation. Mol. Biol. Cell 21:2327-37
    • (2010) Mol. Biol. Cell , vol.21 , pp. 2327-2337
    • Nhek, S.1    Ngo, M.2    Yang, X.3    Ng, M.M.4    Field, S.J.5
  • 156
    • 34347379940 scopus 로고    scopus 로고
    • Regulation of secretory transport by protein kinase D-mediated phosphorylation of the ceramide transfer protein
    • Fugmann T, Hausser A, Schoffler P, Schmid S, Pfizenmaier K, Olayioye MA. 2007. Regulation of secretory transport by protein kinase D-mediated phosphorylation of the ceramide transfer protein. J. Cell Biol. 178:15-22
    • (2007) J. Cell Biol , vol.178 , pp. 15-22
    • Fugmann, T.1    Hausser, A.2    Schoffler, P.3    Schmid, S.4    Pfizenmaier, K.5    Olayioye, M.A.6
  • 157
    • 34547096008 scopus 로고    scopus 로고
    • Interorganelle trafficking of ceramide is regulated by phosphorylation-dependent cooperativity between the PH and START domains of CERT
    • Kumagai K, Kawano M, Shinkai-Ouchi F, Nishijima M, Hanada K. 2007. Interorganelle trafficking of ceramide is regulated by phosphorylation-dependent cooperativity between the PH and START domains of CERT. J. Biol. Chem. 282:17758-66
    • (2007) J. Biol. Chem , vol.282 , pp. 17758-17766
    • Kumagai, K.1    Kawano, M.2    Shinkai-Ouchi, F.3    Nishijima, M.4    Hanada, K.5
  • 158
    • 84870989424 scopus 로고    scopus 로고
    • Sphingomyelin organization is required for vesicle biogenesis at the Golgi complex
    • Duran JM, Campelo F, van Galen J, Sachsenheimer T, Sot J, et al. 2012. Sphingomyelin organization is required for vesicle biogenesis at the Golgi complex. EMBO J. 31:4535-46
    • (2012) EMBO J , vol.31 , pp. 4535-4546
    • Duran, J.M.1    Campelo, F.2    Van Galen, J.3    Sachsenheimer, T.4    Sot, J.5
  • 159
    • 84883451938 scopus 로고    scopus 로고
    • ER-PM connections: Sites of information transfer and interorganelle communication
    • Stefan CJ, Manford AG, Emr SD. 2013. ER-PM connections: sites of information transfer and interorganelle communication. Curr. Opin. Cell Biol. 24:434-42
    • (2013) Curr. Opin. Cell Biol , vol.24 , pp. 434-442
    • Stefan, C.J.1    Manford, A.G.2    Emr, S.D.3
  • 161
    • 84870793680 scopus 로고    scopus 로고
    • ER-To-plasma membrane tethering proteins regulate cell signaling and ER morphology
    • Manford AG, Stefan CJ, Yuan HL, Macgurn JA, Emr SD. 2012. ER-To-plasma membrane tethering proteins regulate cell signaling and ER morphology. Dev. Cell 23:1129-40
    • (2012) Dev. Cell , vol.23 , pp. 1129-1140
    • Manford, A.G.1    Stefan, C.J.2    Yuan, H.L.3    Macgurn, J.A.4    Emr, S.D.5
  • 162
    • 79551674131 scopus 로고    scopus 로고
    • Osh proteins regulate phosphoinositide metabolism at ER-plasma membrane contact sites
    • Stefan CJ, Manford AG, Baird D, Yamada-Hanff J, Mao Y, Emr SD. 2011. Osh proteins regulate phosphoinositide metabolism at ER-plasma membrane contact sites. Cell 144:389-401
    • (2011) Cell , vol.144 , pp. 389-401
    • Stefan, C.J.1    Manford, A.G.2    Baird, D.3    Yamada-Hanff, J.4    Mao, Y.5    Emr, S.D.6
  • 163
    • 77951978964 scopus 로고    scopus 로고
    • Crystal structure of the yeast Sac1: Implications for its phosphoinositide phosphatase function
    • Manford A,Xia T, Saxena AK, Stefan C,Hu F, et al. 2010. Crystal structure of the yeast Sac1: implications for its phosphoinositide phosphatase function. EMBO J. 29:1489-98
    • (2010) EMBO J , vol.29 , pp. 1489-1498
    • Manford, A.1    Xia, T.2    Saxena, A.K.3    Stefan, C.4    Hu, F.5
  • 164
    • 84879814659 scopus 로고    scopus 로고
    • Structure of Osh3 reveals a conserved mode of phosphoinositide binding in oxysterol-binding proteins
    • Tong J, Yang H, Eom SH, ImYJ. 2013. Structure of Osh3 reveals a conserved mode of phosphoinositide binding in oxysterol-binding proteins. Structure 21:1203-13
    • (2013) Structure , vol.21 , pp. 1203-1213
    • Tong, J.1    Yang, H.2    Eom, S.H.3    Im, Y.J.4
  • 165
    • 23744478870 scopus 로고    scopus 로고
    • Give lipids a START: The StAR-related lipid transfer (START) domain in mammals
    • Alpy F, Tomasetto C. 2005. Give lipids a START: the StAR-related lipid transfer (START) domain in mammals. J. Cell Sci. 118:2791-801
    • (2005) J. Cell Sci , vol.118 , pp. 2791-2801
    • Alpy, F.1    Tomasetto, C.2
  • 166
    • 77957134067 scopus 로고    scopus 로고
    • Non-vesicular lipid transport by lipid-Transfer proteins and beyond
    • Lev S. 2010. Non-vesicular lipid transport by lipid-Transfer proteins and beyond. Nat. Rev. Mol. Cell Biol. 11:739-50
    • (2010) Nat. Rev. Mol. Cell Biol , vol.11 , pp. 739-750
    • Lev, S.1
  • 168
    • 84884210112 scopus 로고    scopus 로고
    • Interactome map uncovers phosphatidylserine transport by oxysterol-binding proteins
    • Maeda K, Anand K, Chiapparino A, Kumar A, Poletto M, et al. 2013. Interactome map uncovers phosphatidylserine transport by oxysterol-binding proteins. Nature 501:257-56
    • (2013) Nature , vol.501 , pp. 257-356
    • Maeda, K.1    Anand, K.2    Chiapparino, A.3    Kumar, A.4    Poletto, M.5
  • 169
    • 1242283841 scopus 로고    scopus 로고
    • Structure-function analysis of human [corrected] phosphatidylinositol transfer protein alpha; Bound to phosphatidylinositol
    • Tilley SJ, Skippen A, Murray-Rust J, Swigart PM, Stewart A, et al. 2004. Structure-function analysis of human [corrected] phosphatidylinositol transfer protein alpha; bound to phosphatidylinositol. Structure 12:317-26
    • (2004) Structure , vol.12 , pp. 317-326
    • Tilley, S.J.1    Skippen, A.2    Murray-Rust, J.3    Swigart, P.M.4    Stewart, A.5
  • 170
    • 0035937732 scopus 로고    scopus 로고
    • Structure of a multifunctional protein. Mammalian phosphatidylinositol transfer protein complexed with phosphatidylcholine
    • YoderMD, Thomas LM, Tremblay JM, Oliver RL, Yarbrough LR, Helmkamp GMJr. 2001. Structure of a multifunctional protein. Mammalian phosphatidylinositol transfer protein complexed with phosphatidylcholine. J. Biol. Chem. 276:9246-52
    • (2001) J. Biol. Chem , vol.276 , pp. 9246-9252
    • Yoder, M.D.1    Thomas, L.M.2    Tremblay, J.M.3    Oliver, R.L.4    Yarbrough, L.R.5    Helmkamp Jr., G.M.6
  • 171
    • 38649131260 scopus 로고    scopus 로고
    • Structural basis for specific lipid recognition by CERT responsible for nonvesicular trafficking of ceramide
    • Kudo N, Kumagai K, Tomishige N, Yamaji T, Wakatsuki S, et al. 2008. Structural basis for specific lipid recognition by CERT responsible for nonvesicular trafficking of ceramide. Proc. Natl. Acad. Sci. USA 105:488-93
    • (2008) Proc. Natl. Acad. Sci. USA , vol.105 , pp. 488-493
    • Kudo, N.1    Kumagai, K.2    Tomishige, N.3    Yamaji, T.4    Wakatsuki, S.5
  • 172
    • 84875776334 scopus 로고    scopus 로고
    • Oxysterol-binding protein family i is the target of minor enviroxime-like compounds
    • AritaM, KojimaH,Nagano T,Okabe T, Wakita T, Shimizu H. 2013. Oxysterol-binding protein family I is the target of minor enviroxime-like compounds. J. Virol. 87:4252-60
    • (2013) J. Virol , vol.87 , pp. 4252-4260
    • Arita, M.1    Kojima, H.2    Nagano, T.3    Okabe, T.4    Wakita, T.5    Shimizu, H.6
  • 174
    • 67749122635 scopus 로고    scopus 로고
    • An ER-mitochondria tethering complex revealed by a synthetic biology screen
    • Kornmann B, Currie E,Collins SR, Schuldiner M, Nunnari J, et al. 2009. An ER-mitochondria tethering complex revealed by a synthetic biology screen. Science 325:477-81
    • (2009) Science , vol.325 , pp. 477-481
    • Kornmann, B.1    Currie, E.2    Collins, S.R.3    Schuldiner, M.4    Nunnari, J.5
  • 175
    • 84858123139 scopus 로고    scopus 로고
    • A conserved membrane-binding domain targets proteins to organelle contact sites
    • Toulmay A, Prinz WA. 2012. A conserved membrane-binding domain targets proteins to organelle contact sites. J. Cell Sci. 125:49-58
    • (2012) J. Cell Sci , vol.125 , pp. 49-58
    • Toulmay, A.1    Prinz, W.A.2
  • 176
    • 79959397904 scopus 로고    scopus 로고
    • Mechanisms of membrane curvature sensing
    • Antonny B. 2011. Mechanisms of membrane curvature sensing. Annu. Rev. Biochem. 80:101-23
    • (2011) Annu. Rev. Biochem , vol.80 , pp. 101-123
    • Antonny, B.1
  • 177
    • 84872202122 scopus 로고    scopus 로고
    • ER-shaping proteins facilitate lipid exchange between the ER and mitochondria in S. Cerevisiae
    • Voss C, Lahiri S, Young BP, Loewen CJ, Prinz WA. 2012. ER-shaping proteins facilitate lipid exchange between the ER and mitochondria in S. cerevisiae. J. Cell Sci. 125:4791-99
    • (2012) J. Cell Sci , vol.125 , pp. 4791-4799
    • Voss, C.1    Lahiri, S.2    Young, B.P.3    Loewen, C.J.4    Prinz, W.A.5


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.